4-Transitive Digraphs I: The Structure of Strong 4-Transitive Digraphs
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 247-260.

Voir la notice de l'article provenant de la source Library of Science

Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A digraph D is transitive if for every three distinct vertices u, v,w ∈ V (D), (u, v), (v,w) ∈ A(D) implies that (u,w) ∈ A(D). This concept can be generalized as follows: A digraph is k-transitive if for every u, v ∈ V (D), the existence of a uv-directed path of length k in D implies that (u, v) ∈ A(D). A very useful structural characterization of transitive digraphs has been known for a long time, and recently, 3-transitive digraphs have been characterized. In this work, some general structural results are proved for k-transitive digraphs with arbitrary k ≥ 2. Some of this results are used to characterize the family of 4-transitive digraphs. Also some of the general results remain valid for k-quasi-transitive digraphs considering an additional hypothesis. A conjecture on a structural property of k-transitive digraphs is proposed.
Keywords: digraph, transitive digraph, quasi-transitive digraph, 4-transitive digraph, k-transitive digraph, k-quasi-transitive digraph
@article{DMGT_2013_33_2_a0,
     author = {Hern\'andez-Cruz, C\'esar},
     title = {4-Transitive {Digraphs} {I:} {The} {Structure} of {Strong} {4-Transitive} {Digraphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {247--260},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a0/}
}
TY  - JOUR
AU  - Hernández-Cruz, César
TI  - 4-Transitive Digraphs I: The Structure of Strong 4-Transitive Digraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 247
EP  - 260
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a0/
LA  - en
ID  - DMGT_2013_33_2_a0
ER  - 
%0 Journal Article
%A Hernández-Cruz, César
%T 4-Transitive Digraphs I: The Structure of Strong 4-Transitive Digraphs
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 247-260
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a0/
%G en
%F DMGT_2013_33_2_a0
Hernández-Cruz, César. 4-Transitive Digraphs I: The Structure of Strong 4-Transitive Digraphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 247-260. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a0/

[1] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications (Springer-Verlag, Berlin Heidelberg New York, 2002).

[2] J. Bang-Jensen and J. Huang, Quasi-transitive digraphs, J. Graph Theory 20 (1995) 141-161. doi:10.1002/jgt.3190200205

[3] C. Berge, Graphs (North-Holland, Amsterdam New York, 1985).

[4] F. Boesch and R. Tindell, Robbins Theorem for mixed multigraphs, Amer. Math. Monthly 87 (1980) 716-719. doi:10.2307/2321858

[5] R.A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory (Encyclopedia of Mathematics and its Applications) (Cambridge University Press, 1991).

[6] R. Diestel, Graph Theory 3rd Edition (Springer-Verlag, Berlin Heidelberg New York, 2005).

[7] H. Galeana-Sánchez, I.A. Goldfeder and I. Urrutia, On the structure of 3-quasitransitive digraphs, Discrete Math. 310 (2010) 2495-2498. doi:10.1016/j.disc.2010.06.008

[8] H. Galeana-Sánchez and C. Hernández-Cruz, k-kernels in k-transitive and k-quasitransitive digraphs, Discrete Math. 312 (2012) 2522-2530. doi:10.1016/j.disc.2012.05.005

[9] C. Hernández-Cruz, 3-transitive digraphs, Discuss. Math. Graph Theory 32 (2012) 205-219. doi:10.7151/dmgt.1613

[10] S.Wang and R.Wang, Independent sets and non-augmentable paths in arc-locally insemicomplete digraphs and quasi-arc-transitive digraphs, Discrete Math. 311 (2010) 282-288. doi:10.1016/j.disc.2010.11.009