A Survey of the Path Partition Conjecture
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 117-131

Voir la notice de l'article provenant de la source Library of Science

The Path Partition Conjecture (PPC) states that if G is any graph and (λ1, λ2) any pair of positive integers such that G has no path with more than λ1 + λ2 vertices, then there exists a partition (V1, V2) of the vertex set of G such that Vi has no path with more than λi vertices, i = 1, 2. We present a brief history of the PPC, discuss its relation to other conjectures and survey results on the PPC that have appeared in the literature since its first formulation in 1981.
Keywords: Path Partition Conjecture, Path Kernel Conjecture, generalized colourings, additive hereditary properties
@article{DMGT_2013_33_1_a9,
     author = {Frick, Marietjie},
     title = {A {Survey} of the {Path} {Partition} {Conjecture}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {117--131},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a9/}
}
TY  - JOUR
AU  - Frick, Marietjie
TI  - A Survey of the Path Partition Conjecture
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 117
EP  - 131
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a9/
LA  - en
ID  - DMGT_2013_33_1_a9
ER  - 
%0 Journal Article
%A Frick, Marietjie
%T A Survey of the Path Partition Conjecture
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 117-131
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a9/
%G en
%F DMGT_2013_33_1_a9
Frick, Marietjie. A Survey of the Path Partition Conjecture. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 117-131. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a9/