Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_1_a7, author = {Fiedorowicz, Anna}, title = {Acyclic {6-Colouring} of {Graphs} with {Maximum} {Degree} 5 and {Small} {Maximum} {Average} {Degree}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {91--99}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a7/} }
TY - JOUR AU - Fiedorowicz, Anna TI - Acyclic 6-Colouring of Graphs with Maximum Degree 5 and Small Maximum Average Degree JO - Discussiones Mathematicae. Graph Theory PY - 2013 SP - 91 EP - 99 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a7/ LA - en ID - DMGT_2013_33_1_a7 ER -
Fiedorowicz, Anna. Acyclic 6-Colouring of Graphs with Maximum Degree 5 and Small Maximum Average Degree. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 91-99. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a7/
[1] O.V. Borodin, On acyclic colorings of planar graphs, Discrete Math. 25 (1979) 211-236. doi:10.1016/0012-365X(79)90077-3
[2] O.V. Borodin, A.V. Kostochka and D.R.Woodall, Acyclic colorings of planar graphs with large girth, J. Lond. Math. Soc. 60 (1999) 344-352. doi:10.1112/S0024610799007942
[3] M.I. Burstein, Every 4-valent graph has an acyclic 5-coloring, Soobšč. Akad. Gruzin. SSR 93 (1979) 21-24 (in Russian).
[4] G. Fertin and A. Raspaud, Acyclic coloring of graphs of maximum degree five: Nine colors are enough, Inform. Process. Lett. 105 (2008) 65-72. doi:10.1016/j.ipl.2007.08.022
[5] B. Grünbaum, Acyclic coloring of planar graphs, Israel J. Math. 14 (1973) 390-408. doi:10.1007/BF02764716
[6] A.V. Kostochka, Upper bounds of chromatic functions of graphs, Ph.D. Thesis, Novosibirsk, 1978 (in Russian).
[7] A.V. Kostochka and C. Stocker, Graphs with maximum degree 5 are acyclically 7- colorable, Ars Math. Contemp. 4 (2011) 153-164.
[8] S. Skulrattanakulchai, Acyclic colorings of subcubic graphs, Inform. Process. Lett. 92 (2004) 161-167. doi:10.1016/j.ipl.2004.08.002
[9] D. West, Introduction to Graph Theory, 2nd ed. (Prentice Hall, Upper Saddle River, 2001).