When is an Incomplete 3 × n Latin Rectangle Completable?
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 57-69

Voir la notice de l'article provenant de la source Library of Science

We use the concept of an availability matrix, introduced in Euler [7], to describe the family of all minimal incomplete 3 × n latin rectangles that are not completable. We also present a complete description of minimal incomplete such latin squares of order 4.
Keywords: incomplete latin rectangle, completability, solution space enumeration, branch-and-bound
@article{DMGT_2013_33_1_a5,
     author = {Euler, Reinhardt and Oleksik, Pawe{\l}},
     title = {When is an {Incomplete} 3 {\texttimes} n {Latin} {Rectangle} {Completable?}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {57--69},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a5/}
}
TY  - JOUR
AU  - Euler, Reinhardt
AU  - Oleksik, Paweł
TI  - When is an Incomplete 3 × n Latin Rectangle Completable?
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 57
EP  - 69
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a5/
LA  - en
ID  - DMGT_2013_33_1_a5
ER  - 
%0 Journal Article
%A Euler, Reinhardt
%A Oleksik, Paweł
%T When is an Incomplete 3 × n Latin Rectangle Completable?
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 57-69
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a5/
%G en
%F DMGT_2013_33_1_a5
Euler, Reinhardt; Oleksik, Paweł. When is an Incomplete 3 × n Latin Rectangle Completable?. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 57-69. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a5/