A Note on the Uniqueness of Stable Marriage Matching
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 49-55.

Voir la notice de l'article provenant de la source Library of Science

In this note we present some sufficient conditions for the uniqueness of a stable matching in the Gale-Shapley marriage classical model of even size. We also state the result on the existence of exactly two stable matchings in the marriage problem of odd size with the same conditions.
Keywords: stable matching, Gale-Shapley model, stable perfect matching
@article{DMGT_2013_33_1_a4,
     author = {Drgas-Burchardt, Ewa},
     title = {A {Note} on the {Uniqueness} of {Stable} {Marriage} {Matching}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {49--55},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a4/}
}
TY  - JOUR
AU  - Drgas-Burchardt, Ewa
TI  - A Note on the Uniqueness of Stable Marriage Matching
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 49
EP  - 55
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a4/
LA  - en
ID  - DMGT_2013_33_1_a4
ER  - 
%0 Journal Article
%A Drgas-Burchardt, Ewa
%T A Note on the Uniqueness of Stable Marriage Matching
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 49-55
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a4/
%G en
%F DMGT_2013_33_1_a4
Drgas-Burchardt, Ewa. A Note on the Uniqueness of Stable Marriage Matching. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 49-55. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a4/

[1] E. Drgas-Burchardt and Z. Świtalski, A number of stable matchings in models of the Gale-Shapley type, manuscript.

[2] J. Eeckhout, On the uniqueness of stable marriage matchings, Econom. Lett. 69 (2000) 1-8. doi:10.1016/S0165-1765(00)00263-9

[3] D. Gale, The two-sided matching problem: origin, development and current issues, Int. Game Theory Rev. 3 (2001) 237-252. doi:10.1142/S0219198901000373

[4] D. Gale and L.S. Shapley, College admissions and the stability of marriage, Amer. Math. Monthly 69 (1962) 9-15. doi:10.2307/2312726

[5] R.W. Irving and P. Leather, The complexity of counting stable marriages, SIAM J. Comput. 15 (1986) 655-667. doi:10.1137/0215048

[6] D.E. Knuth, Mariages Stables (Less Presses de l’Universite de Montreal, Montreal, 1976).

[7] D.E. Knuth, Stable Marriage and Its Relation to other Combinatorial Problems. An Introduction to the Mathematical Analysis of Algorithms (American Mathematical Society, Providence, Rhode Island, 1997).