Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_1_a4, author = {Drgas-Burchardt, Ewa}, title = {A {Note} on the {Uniqueness} of {Stable} {Marriage} {Matching}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {49--55}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a4/} }
Drgas-Burchardt, Ewa. A Note on the Uniqueness of Stable Marriage Matching. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 49-55. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a4/
[1] E. Drgas-Burchardt and Z. Świtalski, A number of stable matchings in models of the Gale-Shapley type, manuscript.
[2] J. Eeckhout, On the uniqueness of stable marriage matchings, Econom. Lett. 69 (2000) 1-8. doi:10.1016/S0165-1765(00)00263-9
[3] D. Gale, The two-sided matching problem: origin, development and current issues, Int. Game Theory Rev. 3 (2001) 237-252. doi:10.1142/S0219198901000373
[4] D. Gale and L.S. Shapley, College admissions and the stability of marriage, Amer. Math. Monthly 69 (1962) 9-15. doi:10.2307/2312726
[5] R.W. Irving and P. Leather, The complexity of counting stable marriages, SIAM J. Comput. 15 (1986) 655-667. doi:10.1137/0215048
[6] D.E. Knuth, Mariages Stables (Less Presses de l’Universite de Montreal, Montreal, 1976).
[7] D.E. Knuth, Stable Marriage and Its Relation to other Combinatorial Problems. An Introduction to the Mathematical Analysis of Algorithms (American Mathematical Society, Providence, Rhode Island, 1997).