Universality for and in Induced-Hereditary Graph Properties
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 33-47

Voir la notice de l'article provenant de la source Library of Science

The well-known Rado graph R is universal in the set of all countable graphs ℐ, since every countable graph is an induced subgraph of R. We study universality in ℐ and, using R, show the existence of 2^ℵ_0 pairwise non-isomorphic graphs which are universal in ℐ and denumerably many other universal graphs in ℐ with prescribed attributes. Then we contrast universality for and universality in induced-hereditary properties of graphs and show that the overwhelming majority of induced-hereditary properties contain no universal graphs. This is made precise by showing that there are 2^2^ℵ_0 properties in the lattice 𝕂_≤ of induced-hereditary properties of which only at most 2^ℵ_0 contain universal graphs. In a final section we discuss the outlook on future work; in particular the question of characterizing those induced-hereditary properties for which there is a universal graph in the property.
Keywords: countable graph, universal graph, induced-hereditary property
@article{DMGT_2013_33_1_a3,
     author = {Broere, Izak and Heidema, Johannes},
     title = {Universality for and in {Induced-Hereditary} {Graph} {Properties}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {33--47},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a3/}
}
TY  - JOUR
AU  - Broere, Izak
AU  - Heidema, Johannes
TI  - Universality for and in Induced-Hereditary Graph Properties
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 33
EP  - 47
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a3/
LA  - en
ID  - DMGT_2013_33_1_a3
ER  - 
%0 Journal Article
%A Broere, Izak
%A Heidema, Johannes
%T Universality for and in Induced-Hereditary Graph Properties
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 33-47
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a3/
%G en
%F DMGT_2013_33_1_a3
Broere, Izak; Heidema, Johannes. Universality for and in Induced-Hereditary Graph Properties. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 33-47. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a3/