Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_1_a3, author = {Broere, Izak and Heidema, Johannes}, title = {Universality for and in {Induced-Hereditary} {Graph} {Properties}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {33--47}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a3/} }
TY - JOUR AU - Broere, Izak AU - Heidema, Johannes TI - Universality for and in Induced-Hereditary Graph Properties JO - Discussiones Mathematicae. Graph Theory PY - 2013 SP - 33 EP - 47 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a3/ LA - en ID - DMGT_2013_33_1_a3 ER -
Broere, Izak; Heidema, Johannes. Universality for and in Induced-Hereditary Graph Properties. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 33-47. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a3/
[1] M. Borowiecki, I. Broere, M. Frick, G. Semanišin and P. Mihók, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50. doi:10.7151/dmgt.1037
[2] I. Broere and J. Heidema, Constructing an abundance of Rado graphs, Util. Math. 84 (2011) 139-152.
[3] I. Broere and J. Heidema, Some universal directed labelled graphs, Util. Math. 84 (2011) 311-324.
[4] I. Broere and J. Heidema, Universal H-colourable graphs, accepted for publication in Graphs Combin. doi:10.1007/s00373-012-1216-5
[5] I. Broere and J. Heidema, Induced-hereditary graph properties, homogeneity, extensibility and universality, accepted for publication in J. Combin. Math. Combin. Comput.
[6] I. Broere, J. Heidema and P. Mihók, Constructing universal graphs for inducedhereditary graph properties, accepted for publication in Math. Slovaca.
[7] I. Broere, J. Heidema and P. Mihók, Universality in graph properties with degree restrictions, accepted for publication in Discuss. Math. Graph Theory.
[8] P.J. Cameron, The random graph revisited, http://www.math.uni-bielefeld.de/rehmann/ECM/cdrom/3ecm/pdfs/pant3/camer.pdf
[9] G. Cherlin and P. Komjáth, There is no universal countable pentagon-free graph, J. Graph Theory 18 (1994) 337-341. doi:10.1002/jgt.3190180405
[10] G. Cherlin, S. Shelah and N. Shi, Universal graphs with forbidden subgraphs and algebraic closure, Adv. Appl. Math. 22 (1999) 454-491. doi:10.1006/aama.1998.0641
[11] G. Cherlin and N. Shi, Graphs omitting a finite set of cycles, J. Graph Theory 21 (1996) 351-355. doi:10.1002/(SICI)1097-0118(199603)21:3h351::AID-JGT11i3.0.CO;2-K
[12] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. Math. 164 (2006) 51-229. doi:10.4007/annals.2006.164.51
[13] B.A. Davey and H.A. Priestly, Introduction to Lattices and Order, Second Edition, (Cambridge University Press, New York, 2008).
[14] R. Diestel, Graph Theory, Fourth Edition, Graduate Texts in Mathematics, 173, (Springer, Heidelberg, 2010).
[15] R. Fraïssé, Sur l’extension aux relations de quelques propriétiés connues des ordres, C. R. Acad. Sci. Paris 237 (1953) 508-510.
[16] A. Hajnal and J. Pach, Monochromatic paths in infinite coloured graphs, in: Colloquia Mathematica Societatis János Bolyai 37, Finite and infinite sets, Eger (Hungary) (1981), 359-369.
[17] C.W. Henson, A family of countable homogeneous graphs Pacific J. Math. 38 (1971) 69-83. doi:10.2140/pjm.1971.38.69
[18] P. Komjáth and J. Pach, Universal graphs without large bipartite subgraphs, Mathematika 31 (1984) 282-290. doi:10.1112/S002557930001250X
[19] F.R. Madelaine, Universal structures and the logic of forbidden patterns, Log. Methods Comput. Sci. 5 (2:13) (2009) 1-25. doi:10.2168/LMCS-5(2:13)2009
[20] P. Mihók, J. Miškuf and G. Semanišin, On universal graphs for hom-properties, Discuss. Math. Graph Theory 29 (2009) 401-409. doi:10.7151/dmgt.1455
[21] R. Rado, Universal graphs and universal functions, Acta Arith. 9 (1964) 331-340.