Universality for and in Induced-Hereditary Graph Properties
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 33-47.

Voir la notice de l'article provenant de la source Library of Science

The well-known Rado graph R is universal in the set of all countable graphs ℐ, since every countable graph is an induced subgraph of R. We study universality in ℐ and, using R, show the existence of 2^ℵ_0 pairwise non-isomorphic graphs which are universal in ℐ and denumerably many other universal graphs in ℐ with prescribed attributes. Then we contrast universality for and universality in induced-hereditary properties of graphs and show that the overwhelming majority of induced-hereditary properties contain no universal graphs. This is made precise by showing that there are 2^2^ℵ_0 properties in the lattice 𝕂_≤ of induced-hereditary properties of which only at most 2^ℵ_0 contain universal graphs. In a final section we discuss the outlook on future work; in particular the question of characterizing those induced-hereditary properties for which there is a universal graph in the property.
Keywords: countable graph, universal graph, induced-hereditary property
@article{DMGT_2013_33_1_a3,
     author = {Broere, Izak and Heidema, Johannes},
     title = {Universality for and in {Induced-Hereditary} {Graph} {Properties}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {33--47},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a3/}
}
TY  - JOUR
AU  - Broere, Izak
AU  - Heidema, Johannes
TI  - Universality for and in Induced-Hereditary Graph Properties
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 33
EP  - 47
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a3/
LA  - en
ID  - DMGT_2013_33_1_a3
ER  - 
%0 Journal Article
%A Broere, Izak
%A Heidema, Johannes
%T Universality for and in Induced-Hereditary Graph Properties
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 33-47
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a3/
%G en
%F DMGT_2013_33_1_a3
Broere, Izak; Heidema, Johannes. Universality for and in Induced-Hereditary Graph Properties. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 33-47. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a3/

[1] M. Borowiecki, I. Broere, M. Frick, G. Semanišin and P. Mihók, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50. doi:10.7151/dmgt.1037

[2] I. Broere and J. Heidema, Constructing an abundance of Rado graphs, Util. Math. 84 (2011) 139-152.

[3] I. Broere and J. Heidema, Some universal directed labelled graphs, Util. Math. 84 (2011) 311-324.

[4] I. Broere and J. Heidema, Universal H-colourable graphs, accepted for publication in Graphs Combin. doi:10.1007/s00373-012-1216-5

[5] I. Broere and J. Heidema, Induced-hereditary graph properties, homogeneity, extensibility and universality, accepted for publication in J. Combin. Math. Combin. Comput.

[6] I. Broere, J. Heidema and P. Mihók, Constructing universal graphs for inducedhereditary graph properties, accepted for publication in Math. Slovaca.

[7] I. Broere, J. Heidema and P. Mihók, Universality in graph properties with degree restrictions, accepted for publication in Discuss. Math. Graph Theory.

[8] P.J. Cameron, The random graph revisited, http://www.math.uni-bielefeld.de/rehmann/ECM/cdrom/3ecm/pdfs/pant3/camer.pdf

[9] G. Cherlin and P. Komjáth, There is no universal countable pentagon-free graph, J. Graph Theory 18 (1994) 337-341. doi:10.1002/jgt.3190180405

[10] G. Cherlin, S. Shelah and N. Shi, Universal graphs with forbidden subgraphs and algebraic closure, Adv. Appl. Math. 22 (1999) 454-491. doi:10.1006/aama.1998.0641

[11] G. Cherlin and N. Shi, Graphs omitting a finite set of cycles, J. Graph Theory 21 (1996) 351-355. doi:10.1002/(SICI)1097-0118(199603)21:3h351::AID-JGT11i3.0.CO;2-K

[12] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. Math. 164 (2006) 51-229. doi:10.4007/annals.2006.164.51

[13] B.A. Davey and H.A. Priestly, Introduction to Lattices and Order, Second Edition, (Cambridge University Press, New York, 2008).

[14] R. Diestel, Graph Theory, Fourth Edition, Graduate Texts in Mathematics, 173, (Springer, Heidelberg, 2010).

[15] R. Fraïssé, Sur l’extension aux relations de quelques propriétiés connues des ordres, C. R. Acad. Sci. Paris 237 (1953) 508-510.

[16] A. Hajnal and J. Pach, Monochromatic paths in infinite coloured graphs, in: Colloquia Mathematica Societatis János Bolyai 37, Finite and infinite sets, Eger (Hungary) (1981), 359-369.

[17] C.W. Henson, A family of countable homogeneous graphs Pacific J. Math. 38 (1971) 69-83. doi:10.2140/pjm.1971.38.69

[18] P. Komjáth and J. Pach, Universal graphs without large bipartite subgraphs, Mathematika 31 (1984) 282-290. doi:10.1112/S002557930001250X

[19] F.R. Madelaine, Universal structures and the logic of forbidden patterns, Log. Methods Comput. Sci. 5 (2:13) (2009) 1-25. doi:10.2168/LMCS-5(2:13)2009

[20] P. Mihók, J. Miškuf and G. Semanišin, On universal graphs for hom-properties, Discuss. Math. Graph Theory 29 (2009) 401-409. doi:10.7151/dmgt.1455

[21] R. Rado, Universal graphs and universal functions, Acta Arith. 9 (1964) 331-340.