Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_1_a2, author = {Balogh, J\'ozsef and Kostochka, Alexandr and Raigorodskii, Andrei}, title = {Coloring {Some} {Finite} {Sets} in $ \mathbb{R}^n $}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {25--31}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a2/} }
TY - JOUR AU - Balogh, József AU - Kostochka, Alexandr AU - Raigorodskii, Andrei TI - Coloring Some Finite Sets in $ \mathbb{R}^n $ JO - Discussiones Mathematicae. Graph Theory PY - 2013 SP - 25 EP - 31 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a2/ LA - en ID - DMGT_2013_33_1_a2 ER -
Balogh, József; Kostochka, Alexandr; Raigorodskii, Andrei. Coloring Some Finite Sets in $ \mathbb{R}^n $. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 25-31. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a2/
[1] N.G. de Bruijn and P. Erdős, A colour problem for infinite graphs and a problem in the theory of relations, Proc. Koninkl. Nederl. Acad. Wet. (A) 54 (1951) 371-373.
[2] P. Frankl and R. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981) 357-368. doi:10.1007/BF02579457
[3] A.B. Kupavskiy, On coloring spheres embedded into Rn, Sb. Math. 202(6) (2011) 83-110.
[4] A.B. Kupavskiy and A.M. Raigorodskii, On the chromatic number of R9, J. Math. Sci. 163(6) (2009) 720-731. doi:10.1007/s10958-009-9708-4
[5] D.G. Larman, A note on the realization of distances within sets in Euclidean space, Comment. Math. Helv. 53 (1978) 529-535. doi:10.1007/BF02566096
[6] D.G. Larman and C.A. Rogers, The realization of distances within sets in Euclidean space, Mathematika 19 (1972) 1-24. doi:10.1112/S0025579300004903
[7] N. Pippenger and J. Spencer, Asymptotic behavior of the chromatic index for hypergraphs, J. Combin. Theory (A) 51 (1989) 24-42. doi:10.1016/0097-3165(89)90074-5
[8] A.M. Raigorodskii, On the chromatic number of a space, Russian Math. Surveys 55 (2000) N2, 351-352. doi:10.1070/RM2000v055n02ABEH000281
[9] A.M. Raigorodskii, The problems of Borsuk and Grünbaum on lattice polytopes, Izv. Math. 69(3) (2005) 81-108. English transl. Izv. Math. 69(3) (2005) 513-537. doi:10.1070/IM2005v069n03ABEH000537