Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_1_a17, author = {Skupie\'n, Zdzis{\l}aw}, title = {Sums of {Powered} {Characteristic} {Roots} {Count} {Distance-Independent} {Circular} {Sets}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {217--229}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a17/} }
TY - JOUR AU - Skupień, Zdzisław TI - Sums of Powered Characteristic Roots Count Distance-Independent Circular Sets JO - Discussiones Mathematicae. Graph Theory PY - 2013 SP - 217 EP - 229 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a17/ LA - en ID - DMGT_2013_33_1_a17 ER -
Skupień, Zdzisław. Sums of Powered Characteristic Roots Count Distance-Independent Circular Sets. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 217-229. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a17/
[1] G.E. Andrews, A theorem on reciprocal polynomials with applications to permutations and compositions, Amer. Math. Monthly 82 (1975) 830-833. doi:10.2307/2319803
[2] C. Berge, Principes de combinatoire (Dunod, Paris, 1968). (English transl.: Principles of Combinatorics (Acad. Press, New York and London, 1971).
[3] M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, and J.P. Schreiber, Pisot and Salem Numbers (Birkhauser, Basel, 1992).
[4] L. Comtet, Advanced Combinatorics. The art of Finite and Infinite Expansions (D. Reidel, Dordrecht, 1974). (French original: Analyse combinatoire, vol. I, II (Presses Univ. France, Paris, 1970).
[5] Ph. Flajolet and R. Sedgewick, Analytic Combinatorics (Cambridge Univ. Press, 2009). http://algo.inria.fr/flajolet/Publications/books.html
[6] I. Kaplansky, Solution of the “Probleme des ménages”, Bull. Amer. Math. Soc. 49 (1943) 784-785. doi:10.1090/S0002-9904-1943-08035-4
[7] M. Kwaśnik and I. Włoch, The total number of generalized stable sets and kernels of graphs, Ars Combin. 55 (2000) 139-146.
[8] W. Lang, A196837: Ordinary generating functions for sums of powers of the first n positive integers, (2011). http://www-itp.particle.uni-karlsruhe.de/~wl
[9] T. Muir, Note on selected combinations, Proc. Roy. Soc. Edinburgh 24 (1901-2) 102-104.
[10] H. Prodinger and R.F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982) 16-21.
[11] Z. Skupień, On sparse hamiltonian 2-decompositions together with exact count of numerous Hamilton cycles, Electron. Notes Discrete Math. 24 (2006) 231-235. doi:10.1016/j.endm.2006.06.032
[12] Z. Skupień, Sparse hamiltonian 2-decompositions together with exact count of numerous Hamilton cycles, Discrete Math. 309 (2009) 6382-6390. doi:10.1016/j.disc.2008.11.003
[13] Z. Skupień, Multi-compositions in exponential counting of hypohamiltonian graphs and/or snarks, manuscript (2009).
[14] Z. Skupień, Generating Girard-Newton-Waring’s moments of mutually reciprocal polynomials, manuscript (2012).
[15] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, OEIS (2007). www.research.att.com/~njas/sequences/
[16] R.P. Stanley, Enumerative Combinatorics, vol. 1 (Cambridge Univ. Press, 1997). doi:10.1017/CBO9780511805967
[17] Wikipedia, Pisot-Vijayaraghavan number, (2012). http://en.wikipedia.org/wiki/Pisot-Vijayaraghavan_number (as of 2012.03.30)