Distance-Locally Disconnected Graphs
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 203-215.

Voir la notice de l'article provenant de la source Library of Science

For an integer k ≥ 1, we say that a (finite simple undirected) graph G is k-distance-locally disconnected, or simply k-locally disconnected if, for any x ∈ V (G), the set of vertices at distance at least 1 and at most k from x induces in G a disconnected graph. In this paper we study the asymptotic behavior of the number of edges of a k-locally disconnected graph on n vertices. For general graphs, we show that this number is Θ(n2) for any fixed value of k and, in the special case of regular graphs, we show that this asymptotic rate of growth cannot be achieved. For regular graphs, we give a general upper bound and we show its asymptotic sharpness for some values of k. We also discuss some connections with cages.
Keywords: neighborhood, distance, locally disconnected, cage
@article{DMGT_2013_33_1_a16,
     author = {Miller, Mirka and Ryan, Joe and Ryj\'a\v{c}ek, Zden\v{e}k},
     title = {Distance-Locally {Disconnected} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {203--215},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a16/}
}
TY  - JOUR
AU  - Miller, Mirka
AU  - Ryan, Joe
AU  - Ryjáček, Zdeněk
TI  - Distance-Locally Disconnected Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 203
EP  - 215
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a16/
LA  - en
ID  - DMGT_2013_33_1_a16
ER  - 
%0 Journal Article
%A Miller, Mirka
%A Ryan, Joe
%A Ryjáček, Zdeněk
%T Distance-Locally Disconnected Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 203-215
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a16/
%G en
%F DMGT_2013_33_1_a16
Miller, Mirka; Ryan, Joe; Ryjáček, Zdeněk. Distance-Locally Disconnected Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 203-215. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a16/

[1] J.A. Bondy, U.S.R. Murty, Graph Theory (Springer, NewYork, 2008). doi:10.1007/978-1-84628-970-5

[2] G. Exoo and R. Jajcay, Dynamic cage survey, Electron. J. Combin. 18 (2011) #DS16.

[3] F. Lazebnik, V.A. Ustimenko and A.J. Woldar, New upper bounds on the order of cages, Electron. J. Combin. 4(2) (1977) R13.

[4] L. Lovász, J. Pelikán and K. Vesztergombi, Discrete Mathematics: Elementary and Beyond (Springer, NewYork, 2003).

[5] Z. Ryjáček, N2-locally disconnected graphs, Discrete Math. 121 (1993) 189-193. doi:10.1016/0012-365X(93)90551-4

[6] Z. Ryjáček and B. Zelinka, Locally disconnected graphs with large numbers of edges, Math. Slovaca 37(2) (1987) 195-198.

[7] B. Zelinka, Two local properties of graphs, Časop. Pěst. Mat. 113 (1988) 113-121.