Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_1_a14, author = {Kemnitz, Arnfried and Przyby{\l}o, Jakub and Schiermeyer, Ingo and Wo\'zniak, Mariusz}, title = {Rainbow {Connection} {In} {Sparse} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {181--192}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a14/} }
TY - JOUR AU - Kemnitz, Arnfried AU - Przybyło, Jakub AU - Schiermeyer, Ingo AU - Woźniak, Mariusz TI - Rainbow Connection In Sparse Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2013 SP - 181 EP - 192 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a14/ LA - en ID - DMGT_2013_33_1_a14 ER -
%0 Journal Article %A Kemnitz, Arnfried %A Przybyło, Jakub %A Schiermeyer, Ingo %A Woźniak, Mariusz %T Rainbow Connection In Sparse Graphs %J Discussiones Mathematicae. Graph Theory %D 2013 %P 181-192 %V 33 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a14/ %G en %F DMGT_2013_33_1_a14
Kemnitz, Arnfried; Przybyło, Jakub; Schiermeyer, Ingo; Woźniak, Mariusz. Rainbow Connection In Sparse Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 181-192. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a14/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008). doi:10.1007/978-1-84628-970-5
[2] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, and R. Yuster, On rainbow connection, Electron. J. Combin. 15 (2008) #57.
[3] S. Chakraborty, E. Fischer, A. Matsliah, and R. Yuster, Hardness and algorithms for rainbow connectivity, J. Comb. Optim. 21 (2011) 330-347. doi:10.1007/s10878-009-9250-9
[4] L.S. Chandran, A. Das, D. Rajendraprasad, and N.M. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory 71 (2012) 206-218. doi:10.1002/jgt.20643
[5] G. Chartrand, G.L. Johns, K.A. McKeon, and P. Zhang, Rainbow connection in graphs, Math. Bohemica 133 (2008) 85-98.
[6] A.B. Ericksen, A matter of security, Graduating Engineer & Computer Careers (2007) 24-28.
[7] J. Ekstein, P. Holub, T. Kaiser, M. Koch, S. Matos Camacho, Z. Ryjáček and I. Schiermeyer, The rainbow connection number in 2-connected graphs, Discrete Math. doi:10.1016/j.disc.2012.04.022
[8] E. Győri, On division of graphs to connected subgraphs, Combinatorics, Vol. I, pp. 485-494, Colloq. Math. Soc. János Bolyai, 18, North-Holland, Amsterdam, 1978.
[9] A. Kemnitz and I. Schiermeyer, Graphs with rainbow connection number two, Discuss. Math. Graph Theory 31 (2011) 313-320. doi:10.7151/dmgt.1547
[10] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185-191.
[11] V.B. Le and Zs. Tuza, Finding optimal rainbow connection is hard, Preprint 2009.
[12] X. Li, M. Liu, and I. Schiermeyer, Rainbow connection number of dense graphs, to appear in Discuss. Math. Graph Theory. arXiv: 1110.5772v1 [math.CO] 2011
[13] X. Li and Y. Sun, Rainbow Connections of Graphs, Springer Briefs in Math., Springer, New York, 2012.
[14] L. Lovász, A homology theory for spanning trees of a graph, Acta Math. Hungar. 30 (1977) 241-251. doi:10.1007/BF01896190
[15] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, Lecture Notes Computer Science 5874 (2009) 432-437. doi:10.1007/978-3-642-10217-2 42