Rainbow Connection In Sparse Graphs
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 181-192

Voir la notice de l'article provenant de la source Library of Science

An edge-coloured connected graph G = (V,E) is called rainbow-connected if each pair of distinct vertices of G is connected by a path whose edges have distinct colours. The rainbow connection number of G, denoted by rc(G), is the minimum number of colours such that G is rainbow-connected. In this paper we prove that rc(G) ≤ k if |V (G)| = n and |E(G)| ≥n-k+12 + k -1 for all integers n and k with n − 6 ≤ k ≤ n − 3. We also show that this bound is tight.
Keywords: rainbow-connected graph, rainbow colouring, rainbow connection number
@article{DMGT_2013_33_1_a14,
     author = {Kemnitz, Arnfried and Przyby{\l}o, Jakub and Schiermeyer, Ingo and Wo\'zniak, Mariusz},
     title = {Rainbow {Connection} {In} {Sparse} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {181--192},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a14/}
}
TY  - JOUR
AU  - Kemnitz, Arnfried
AU  - Przybyło, Jakub
AU  - Schiermeyer, Ingo
AU  - Woźniak, Mariusz
TI  - Rainbow Connection In Sparse Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 181
EP  - 192
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a14/
LA  - en
ID  - DMGT_2013_33_1_a14
ER  - 
%0 Journal Article
%A Kemnitz, Arnfried
%A Przybyło, Jakub
%A Schiermeyer, Ingo
%A Woźniak, Mariusz
%T Rainbow Connection In Sparse Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 181-192
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a14/
%G en
%F DMGT_2013_33_1_a14
Kemnitz, Arnfried; Przybyło, Jakub; Schiermeyer, Ingo; Woźniak, Mariusz. Rainbow Connection In Sparse Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 181-192. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a14/