Fractional (\( \mathcal{P} , \mathcal{Q} \))-Total List Colorings of Graphs
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 167-179.

Voir la notice de l'article provenant de la source Library of Science

Let r, s ∈ℕ, r ≥ s, and 𝒫 and 𝒬 be two additive and hereditary graph properties. A (P,Q)-total (r, s)-coloring of a graph G = (V,E) is a coloring of the vertices and edges of G by s-element subsets of ℤ_r such that for each color i, 0 ≤ i ≤ r − 1, the vertices colored by subsets containing i induce a subgraph of G with property 𝒫, the edges colored by subsets containing i induce a subgraph of G with property 𝒬, and color sets of incident vertices and edges are disjoint. The fractional (𝒫, 𝒬)-total chromatic number χ_f,P,Q^”(G) of G is defined as the infimum of all ratios r//s such that G has a ( 𝒫, 𝒬)-total (r, s)-coloring. A ( 𝒫, 𝒬-total independent set T = V_T ∪ E_T ⊆ V ∪ E is the union of a set V_T of vertices and a set E_T of edges of G such that for the graphs induced by the sets V_T and E_T it holds that G[ V_T ] ∈ 𝒫, G[ E_T ] ∈𝒬, and G[ V_T ] and G[ E_T ] are disjoint. Let T_𝒫 , 𝒬 be the set of all (𝒫 ,𝒬)-total independent sets of G. Let L(x) be a set of admissible colors for every element x ∈ V ∪ E. The graph G is called (𝒫 , 𝒬)-total (a, b)-list colorable if for each list assignment L with |L(x)| = a for all x ∈ V ∪ E it is possible to choose a subset C(x) ⊆ L(x) with |C(x)| = b for all x ∈ V ∪ E such that the set T_i which is defined by T_i = x ∈ V ∪ E : i ∈ C(x) belongs to T_𝒫,𝒬 for every color i. The (𝒫, 𝒬)- choice ratio chr_𝒫,𝒬(G) of G is defined as the infimum of all ratios a//b such that G is (𝒫,𝒬)-total (a, b)-list colorable. We give a direct proof of χ_ f,𝒫,𝒬^'' (G) = chr_𝒫 ,𝒬(G) for all simple graphs G and we present for some properties 𝒫 and 𝒬 new bounds for the (𝒫, 𝒬)-total chromatic number and for the (𝒫,𝒬)-choice ratio of a graph G.
Keywords: graph property, total coloring, (P,Q)-total coloring, fractional coloring, fractional (P,Q)-total chromatic number, circular coloring, circular (P,Q)-total chromatic number, list coloring, (P,Q)-total (a, b)-list colorings
@article{DMGT_2013_33_1_a13,
     author = {Kemnitz, Arnfried and Mih\'ok, Peter and Voigt, Margit},
     title = {Fractional (\( {\mathcal{P}} , {\mathcal{Q}} {\))-Total} {List} {Colorings} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {167--179},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a13/}
}
TY  - JOUR
AU  - Kemnitz, Arnfried
AU  - Mihók, Peter
AU  - Voigt, Margit
TI  - Fractional (\( \mathcal{P} , \mathcal{Q} \))-Total List Colorings of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 167
EP  - 179
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a13/
LA  - en
ID  - DMGT_2013_33_1_a13
ER  - 
%0 Journal Article
%A Kemnitz, Arnfried
%A Mihók, Peter
%A Voigt, Margit
%T Fractional (\( \mathcal{P} , \mathcal{Q} \))-Total List Colorings of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 167-179
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a13/
%G en
%F DMGT_2013_33_1_a13
Kemnitz, Arnfried; Mihók, Peter; Voigt, Margit. Fractional (\( \mathcal{P} , \mathcal{Q} \))-Total List Colorings of Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 167-179. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a13/

[1] N. Alon and K.A. Berman, Regular hypergraphs, Gordon’s Lemma, Steinitz’ Lemma and invariant theory, J. Combin. Theory (A) 43 (1986) 91-97. doi:10.1016/0097-3165(86)90026-9

[2] N. Alon, Zs. Tuza, and M. Voigt, Choosability and fractional chromatic number, Discrete Math. 165/166 (1997) 31-38. doi:10.1016/S0012-365X(96)00159-8

[3] I. Bárány, A vector-sum theorem and its application to improving flow shop guarantees, Math. Oper. Res. 6 (1981) 445-452. doi:10.1287/moor.6.3.445

[4] M. Behzad, Graphs and their chromatic numbers (PhD Thesis, Michigan State University, 1965).

[5] O.V. Borodin, On the total colouring of planar graphs, J. Reine Angew. Math. 394 (1989) 180-185.

[6] M. Borowiecki, I. Broere, M. Frick, P. Mihók, and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50. doi:10.7151/dmgt.1037

[7] M. Borowiecki, A. Kemnitz, M. Marangio, and P. Mihók, Generalized total colorings of graphs, Discuss. Math. Graph Theory 31 (2011) 209-222. doi:10.7151/dmgt.1540

[8] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, (Ed.), Advances in Graph Theory, Vishwa International Publications, Gulbarga, (1991) 42-69.

[9] A.J.W. Hilton and H.R. Hind, Total chromatic number of graphs having large maximum degree, Discrete Math. 117 (1993) 127-140. doi:10.1016/0012-365X(93)90329-R

[10] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley-Interscience, New York, NY, 1995).

[11] A. Kemnitz, M. Marangio, P. Mihók, J. Oravcová, and R. Soták, Generalized fractional and circular total colorings of graphs, preprint.

[12] K. Kilakos and B. Reed, Fractionally colouring total graphs, Combinatorica 13 (1993) 435-440. doi:10.1007/BF01303515

[13] A.V. Kostochka, The total chromatic number of any multigraph with maximum degree five is at most seven, Discrete Math. 162 (1996) 199-214. doi:10.1016/0012-365X(95)00286-6

[14] P. Mihók, Zs. Tuza, and M. Voigt, Fractional P-colourings and P-choice-ratio, Tatra Mt. Math. Publ. 18 (1999) 69-77.

[15] M. Molloy and B. Reed, A bound on the total chromatic number, Combinatorica 18 (1998) 241-280. doi:10.1007/PL00009820

[16] M. Molloy and B. Reed, Graph colouring and the probabilistic method, Algorithms Combin. 23 (Springer, New York, NY, 2002).

[17] D.P. Sanders and Y. Zhao, On total 9-coloring planar graphs of maximum degree seven, J. Graph Theory 31 (1999) 67-73. doi:10.1002/(SICI)1097-0118(199905)31:1h67::AID-JGT6i3.0.CO;2-C

[18] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory (John Wiley & Sons, New York, 1997) http://www.ams.jhu.edu/∼ers/fgt.

[19] S.V. Sevastyanov, On approximate solutions of scheduling problems, Metody Diskr. Analiza 32 (1978) 66-75 (in Russian).

[20] Zs. Tuza, M. Voigt, On a conjecture of Erdős, Rubin and Taylor, Tatra Mt. Math. Publ. 9 (1996) 69-82.

[21] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25-30 (in Russian).

[22] H.P. Yap, Total Colourings of Graphs (Lecture Notes in Mathematics 1623, Springer, Berlin, 1996).