Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_1_a13, author = {Kemnitz, Arnfried and Mih\'ok, Peter and Voigt, Margit}, title = {Fractional (\( {\mathcal{P}} , {\mathcal{Q}} {\))-Total} {List} {Colorings} of {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {167--179}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a13/} }
TY - JOUR AU - Kemnitz, Arnfried AU - Mihók, Peter AU - Voigt, Margit TI - Fractional (\( \mathcal{P} , \mathcal{Q} \))-Total List Colorings of Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2013 SP - 167 EP - 179 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a13/ LA - en ID - DMGT_2013_33_1_a13 ER -
%0 Journal Article %A Kemnitz, Arnfried %A Mihók, Peter %A Voigt, Margit %T Fractional (\( \mathcal{P} , \mathcal{Q} \))-Total List Colorings of Graphs %J Discussiones Mathematicae. Graph Theory %D 2013 %P 167-179 %V 33 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a13/ %G en %F DMGT_2013_33_1_a13
Kemnitz, Arnfried; Mihók, Peter; Voigt, Margit. Fractional (\( \mathcal{P} , \mathcal{Q} \))-Total List Colorings of Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 1, pp. 167-179. http://geodesic.mathdoc.fr/item/DMGT_2013_33_1_a13/
[1] N. Alon and K.A. Berman, Regular hypergraphs, Gordon’s Lemma, Steinitz’ Lemma and invariant theory, J. Combin. Theory (A) 43 (1986) 91-97. doi:10.1016/0097-3165(86)90026-9
[2] N. Alon, Zs. Tuza, and M. Voigt, Choosability and fractional chromatic number, Discrete Math. 165/166 (1997) 31-38. doi:10.1016/S0012-365X(96)00159-8
[3] I. Bárány, A vector-sum theorem and its application to improving flow shop guarantees, Math. Oper. Res. 6 (1981) 445-452. doi:10.1287/moor.6.3.445
[4] M. Behzad, Graphs and their chromatic numbers (PhD Thesis, Michigan State University, 1965).
[5] O.V. Borodin, On the total colouring of planar graphs, J. Reine Angew. Math. 394 (1989) 180-185.
[6] M. Borowiecki, I. Broere, M. Frick, P. Mihók, and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50. doi:10.7151/dmgt.1037
[7] M. Borowiecki, A. Kemnitz, M. Marangio, and P. Mihók, Generalized total colorings of graphs, Discuss. Math. Graph Theory 31 (2011) 209-222. doi:10.7151/dmgt.1540
[8] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, (Ed.), Advances in Graph Theory, Vishwa International Publications, Gulbarga, (1991) 42-69.
[9] A.J.W. Hilton and H.R. Hind, Total chromatic number of graphs having large maximum degree, Discrete Math. 117 (1993) 127-140. doi:10.1016/0012-365X(93)90329-R
[10] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley-Interscience, New York, NY, 1995).
[11] A. Kemnitz, M. Marangio, P. Mihók, J. Oravcová, and R. Soták, Generalized fractional and circular total colorings of graphs, preprint.
[12] K. Kilakos and B. Reed, Fractionally colouring total graphs, Combinatorica 13 (1993) 435-440. doi:10.1007/BF01303515
[13] A.V. Kostochka, The total chromatic number of any multigraph with maximum degree five is at most seven, Discrete Math. 162 (1996) 199-214. doi:10.1016/0012-365X(95)00286-6
[14] P. Mihók, Zs. Tuza, and M. Voigt, Fractional P-colourings and P-choice-ratio, Tatra Mt. Math. Publ. 18 (1999) 69-77.
[15] M. Molloy and B. Reed, A bound on the total chromatic number, Combinatorica 18 (1998) 241-280. doi:10.1007/PL00009820
[16] M. Molloy and B. Reed, Graph colouring and the probabilistic method, Algorithms Combin. 23 (Springer, New York, NY, 2002).
[17] D.P. Sanders and Y. Zhao, On total 9-coloring planar graphs of maximum degree seven, J. Graph Theory 31 (1999) 67-73. doi:10.1002/(SICI)1097-0118(199905)31:1h67::AID-JGT6i3.0.CO;2-C
[18] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory (John Wiley & Sons, New York, 1997) http://www.ams.jhu.edu/∼ers/fgt.
[19] S.V. Sevastyanov, On approximate solutions of scheduling problems, Metody Diskr. Analiza 32 (1978) 66-75 (in Russian).
[20] Zs. Tuza, M. Voigt, On a conjecture of Erdős, Rubin and Taylor, Tatra Mt. Math. Publ. 9 (1996) 69-82.
[21] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25-30 (in Russian).
[22] H.P. Yap, Total Colourings of Graphs (Lecture Notes in Mathematics 1623, Springer, Berlin, 1996).