Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_4_a9, author = {Hud\'ak, D\'avid and Madaras, Tom\'a\v{s} and Suzuki, Yusuke}, title = {On properties of maximal 1-planar graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {737--747}, publisher = {mathdoc}, volume = {32}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a9/} }
TY - JOUR AU - Hudák, Dávid AU - Madaras, Tomáš AU - Suzuki, Yusuke TI - On properties of maximal 1-planar graphs JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 737 EP - 747 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a9/ LA - en ID - DMGT_2012_32_4_a9 ER -
Hudák, Dávid; Madaras, Tomáš; Suzuki, Yusuke. On properties of maximal 1-planar graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 737-747. http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a9/
[1] R. Diestel, Graph Theory (Springer, 2006).
[2] I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, Graphs Combin. 13 (1997) 245-250.
[3] I. Fabrici and T. Madaras, The structure of 1-planar graphs, Discrete Math. 307 (2007) 854-865, doi: 10.1016/j.disc.2005.11.056.
[4] D. Hudák: Štrukt'ura 1-planárnych grafov, Master Thesis, P.J. Šafárik University, Košice, 2009.
[5] V. P. Korzhik, Minimal non-1-planar graphs, Discrete Math. 308 (2008) 1319-1327, doi: 10.1016/j.disc.2007.04.009.
[6] V. P. Korzhik and B. Mohar, Minimal obstructions for 1-immersions and hardness of 1-planarity testing, Springer Lecture Notes in Computer Science 5417 (2009) 302-312, doi: 10.1007/978-3-642-00219-9_29.
[7] B. Mohar, Light paths in 4-connected graphs in the plane and other surfaces, J. Graph Theory 34 (2000) 170-179, doi: 10.1002/1097-0118(200006)34:2170::AID-JGT6>3.0.CO;2-P
[8] J.W. Moon and L. Moser, On hamiltonian bipartite graphs, Israel J. Math 1 (1963) 163-165, doi: 10.1007/BF02759704.
[9] J. Pach and G. Tóth, Graphs drawn with few crossings per edge, Combinatorica 17 (1997) 427-439, doi: 10.1007/BF01215922.
[10] G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Sem. Univ. Hamburg 29 (1965) 107p-117, doi: 10.1007/BF02996313.
[11] T. Kaiser, D. Král, M. Rosenfeld, Z. Ryjáček and H.-J. Voss: Hamilton cycles in prisms over graphs, http://cam.zcu.cz/∼ryjacek/publications/files/60.pdf.
[12] Y. Suzuki, Re-embeddings of maximum 1-planar graphs, SIAM J. Discrete Math. 24 (2010) 1527-1540, doi: 10.1137/090746835.
[13] W. T. Tutte, A theorem on planar graphs, Trans. Am. Math. Soc. 82 (1956) 99-116, doi: 10.1090/S0002-9947-1956-0081471-8.
[14] H. Whitney, A theorem on graphs, Ann. Math. 32 (1931) 378-?390, doi: 10.2307/1968197.