Minimal rankings of the Cartesian product Kₙ ☐ Kₘ
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 725-735
Voir la notice de l'article provenant de la source Library of Science
For a graph G = (V, E), a function f:V(G) → 1,2, ...,k is a k-ranking if f(u) = f(v) implies that every u - v path contains a vertex w such that f(w) > f(u). A k-ranking is minimal if decreasing any label violates the definition of ranking. The arank number, ψ_r(G), of G is the maximum value of k such that G has a minimal k-ranking. We completely determine the arank number of the Cartesian product Kₙ ☐ Kₙ, and we investigate the arank number of Kₙ ☐ Kₘ where n > m.
Keywords:
graph colorings, rankings of graphs, minimal rankings, rank number, arank number, Cartesian product of graphs, rook's graph
@article{DMGT_2012_32_4_a8,
author = {Eyabi, Gilbert and Jacob, Jobby and Laskar, Renu and Narayan, Darren and Pillone, Dan},
title = {Minimal rankings of the {Cartesian} product {Kₙ} ☐ {Kₘ}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {725--735},
publisher = {mathdoc},
volume = {32},
number = {4},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a8/}
}
TY - JOUR AU - Eyabi, Gilbert AU - Jacob, Jobby AU - Laskar, Renu AU - Narayan, Darren AU - Pillone, Dan TI - Minimal rankings of the Cartesian product Kₙ ☐ Kₘ JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 725 EP - 735 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a8/ LA - en ID - DMGT_2012_32_4_a8 ER -
%0 Journal Article %A Eyabi, Gilbert %A Jacob, Jobby %A Laskar, Renu %A Narayan, Darren %A Pillone, Dan %T Minimal rankings of the Cartesian product Kₙ ☐ Kₘ %J Discussiones Mathematicae. Graph Theory %D 2012 %P 725-735 %V 32 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a8/ %G en %F DMGT_2012_32_4_a8
Eyabi, Gilbert; Jacob, Jobby; Laskar, Renu; Narayan, Darren; Pillone, Dan. Minimal rankings of the Cartesian product Kₙ ☐ Kₘ. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 725-735. http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a8/