Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_4_a8, author = {Eyabi, Gilbert and Jacob, Jobby and Laskar, Renu and Narayan, Darren and Pillone, Dan}, title = {Minimal rankings of the {Cartesian} product {Kₙ} ☐ {Kₘ}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {725--735}, publisher = {mathdoc}, volume = {32}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a8/} }
TY - JOUR AU - Eyabi, Gilbert AU - Jacob, Jobby AU - Laskar, Renu AU - Narayan, Darren AU - Pillone, Dan TI - Minimal rankings of the Cartesian product Kₙ ☐ Kₘ JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 725 EP - 735 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a8/ LA - en ID - DMGT_2012_32_4_a8 ER -
%0 Journal Article %A Eyabi, Gilbert %A Jacob, Jobby %A Laskar, Renu %A Narayan, Darren %A Pillone, Dan %T Minimal rankings of the Cartesian product Kₙ ☐ Kₘ %J Discussiones Mathematicae. Graph Theory %D 2012 %P 725-735 %V 32 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a8/ %G en %F DMGT_2012_32_4_a8
Eyabi, Gilbert; Jacob, Jobby; Laskar, Renu; Narayan, Darren; Pillone, Dan. Minimal rankings of the Cartesian product Kₙ ☐ Kₘ. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 725-735. http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a8/
[1] H.L. Bodlaender, J.S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Müller and Zs. Tuza, Rankings of graphs, Graph-theoretic concepts in computer science (Herrsching, 1994), Lect. Notes Comput. Sci. 903 (1995) 292-304.
[2] P.De la Torre, R. Greenlaw and A. Schaeffer, Optimal ranking of trees in polynomial time, In: Proc. 4^{th} ACM Symp. on Discrete Algorithms, Austin Texas, (1993) 138-144.
[3] I.S. Duff and J.K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM Trans. Math. Software (1983) 9 302-325, doi: 10.1145/356044.356047.
[4] J. Ghoshal, R. Laskar and D. Pillone, Minimal rankings, Networks 28 ( 1996) 45-53, doi: 10.1002/(SICI)1097-0037(199608)28:145::AID-NET6>3.0.CO;2-D
[5] J. Ghoshal, R. Laskar and D. Pillone, Further results on minimal rankings, Ars Combin. 52 (1999) 181-198.
[6] S. Hsieh, On vertex ranking of a starlike graph, Inform. Process. Lett. 82 (2002) 131-135, doi: 10.1016/S0020-0190(01)00262-9.
[7] A.V. Iyer, H.D. Ratliff and G. Vijayan, Optimal node ranking of trees, Inform. Process. Lett. 28 (1988) 225-229, doi: 10.1016/0020-0190(88)90194-9.
[8] V. Kostyuk, D.A. Narayan and V.A. Williams, Minimal rankings and the arank number of a path, Discrete Math. 306 (2006) 1991-1996, doi: 10.1016/j.disc.2006.01.027.
[9] R. Laskar and D. Pillone, Theoretical and complexity results for minimal rankings, J. Combin. Inform. System Sci. 25) (2000) 17-33.
[10] R. Laskar and D. Pillone, Extremal results in rankings, Congr. Numer. 149 (2001) 33-54.
[11] C. Leiserson, Area efficient graph layouts for VLSI, Proc. 21st Ann IEEE Symp. FOCS (1980) 270-281.
[12] J.W.H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl. 11 (1990) 134-172, doi: 10.1137/0611010.
[13] S. Novotny, J. Ortiz and D.A. Narayan, Minimal k-rankings and the rank number of P²ₙ, Inform. Process. Lett. 109 (2009) 193-198, doi: 10.1016/j.ipl.2008.10.004.
[14] A. Sen, H. Deng and S. Guha, On a graph partition problem with application to VLSI layout, Inform. Process. Lett. 43 (1992) 87-94, doi: 10.1016/0020-0190(92)90017-P.
[15] X. Zhou, N. Nagai and T. Nishizeki, Generalized vertex-rankings of trees, Inform. Process. Lett. 56 (1995) 321-328, doi: 10.1016/0020-0190(95)00172-7.