Minimal rankings of the Cartesian product Kₙ ☐ Kₘ
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 725-735

Voir la notice de l'article provenant de la source Library of Science

For a graph G = (V, E), a function f:V(G) → 1,2, ...,k is a k-ranking if f(u) = f(v) implies that every u - v path contains a vertex w such that f(w) > f(u). A k-ranking is minimal if decreasing any label violates the definition of ranking. The arank number, ψ_r(G), of G is the maximum value of k such that G has a minimal k-ranking. We completely determine the arank number of the Cartesian product Kₙ ☐ Kₙ, and we investigate the arank number of Kₙ ☐ Kₘ where n > m.
Keywords: graph colorings, rankings of graphs, minimal rankings, rank number, arank number, Cartesian product of graphs, rook's graph
@article{DMGT_2012_32_4_a8,
     author = {Eyabi, Gilbert and Jacob, Jobby and Laskar, Renu and Narayan, Darren and Pillone, Dan},
     title = {Minimal rankings of the {Cartesian} product {Kₙ} ☐ {Kₘ}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {725--735},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a8/}
}
TY  - JOUR
AU  - Eyabi, Gilbert
AU  - Jacob, Jobby
AU  - Laskar, Renu
AU  - Narayan, Darren
AU  - Pillone, Dan
TI  - Minimal rankings of the Cartesian product Kₙ ☐ Kₘ
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 725
EP  - 735
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a8/
LA  - en
ID  - DMGT_2012_32_4_a8
ER  - 
%0 Journal Article
%A Eyabi, Gilbert
%A Jacob, Jobby
%A Laskar, Renu
%A Narayan, Darren
%A Pillone, Dan
%T Minimal rankings of the Cartesian product Kₙ ☐ Kₘ
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 725-735
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a8/
%G en
%F DMGT_2012_32_4_a8
Eyabi, Gilbert; Jacob, Jobby; Laskar, Renu; Narayan, Darren; Pillone, Dan. Minimal rankings of the Cartesian product Kₙ ☐ Kₘ. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 725-735. http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a8/