Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_4_a7, author = {Johns, Garry and Jones, Ryan and Kolasinski, Kyle and Zhang, Ping}, title = {Hamiltonian-colored powers of strong digraphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {705--724}, publisher = {mathdoc}, volume = {32}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a7/} }
TY - JOUR AU - Johns, Garry AU - Jones, Ryan AU - Kolasinski, Kyle AU - Zhang, Ping TI - Hamiltonian-colored powers of strong digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 705 EP - 724 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a7/ LA - en ID - DMGT_2012_32_4_a7 ER -
Johns, Garry; Jones, Ryan; Kolasinski, Kyle; Zhang, Ping. Hamiltonian-colored powers of strong digraphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 705-724. http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a7/
[1] G. Chartrand, R. Jones, K. Kolasinski and P. Zhang, On the Hamiltonicity of distance-colored graphs, Congr. Numer. 202 (2010) 195-209.
[2] G. Chartrand, K. Kolasinski and P. Zhang, The colored bridges problem, Geographical Analysis 43 (2011) 370-382, doi: 10.1111/j.1538-4632.2011.00827.x.
[3] G. Chartrand, L. Lesniak and P. Zhang, Graphs Digraphs, Fifth Edition (Chapman Hall/CRC, Boca Raton, FL, 2011).
[4] H. Fleischner, The square of every nonseparable graph is Hamiltonian, Bull. Amer. Math. Soc. 77 (1971) 1052-1054, doi: 10.1090/S0002-9904-1971-12860-4.
[5] A. Ghouila-Houri, Une condition suffisante d'existence d'un circuit Hamiltonien, C. R. Acad. Sci. Paris 251 (1960) 495-497.
[6] R. Jones, K. Kolasinski and P. Zhang, On Hamiltonian-colored graphs, Util. Math. to appear.
[7] M. Sekanina, On an ordering of the set of vertices of a connected graph, Publ. Fac. Sci. Univ. Brno 412 (1960) 137-142.