Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_4_a6, author = {C\'aceres, Jose and Oellermann, Ortrud and Puertas, M.}, title = {Minimal trees and monophonic convexity}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {685--704}, publisher = {mathdoc}, volume = {32}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a6/} }
TY - JOUR AU - Cáceres, Jose AU - Oellermann, Ortrud AU - Puertas, M. TI - Minimal trees and monophonic convexity JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 685 EP - 704 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a6/ LA - en ID - DMGT_2012_32_4_a6 ER -
Cáceres, Jose; Oellermann, Ortrud; Puertas, M. Minimal trees and monophonic convexity. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 685-704. http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a6/
[1] M. Atici, Computational complexity of geodetic set, Int. J. Comput. Math. 79 (2002) 587-591, doi: 10.1080/00207160210954.
[2] H.-J. Bandelt and H.M. Mulder, Distance-hereditary graphs, J. Combin. Theory (B) 41 (1986) 182-208, doi: 10.1016/0095-8956(86)90043-2.
[3] J.M. Bilbao and P.H. Edelman, The Shapley value on convex geometries, Discrete Appl. Math 103 (2000) 33-40, doi: 10.1016/S0166-218X(99)00218-8.
[4] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A survey (SIAM Monogr. Discrete Math. Appl., Philidelphia, 1999).
[5] J. Cáceres and O.R. Oellermann, On 3-Steiner simplicial orderings, Discrete Math. 309 (2009) 5825-5833, doi: 10.1016/j.disc.2008.05.047.
[6] J. Cáceres, O.R. Oellermann and M.L. Puertas, m₃³-convex geometries are A-free, arXiv.org 1107.1048, (2011) 1-15.
[7] M. Changat and J. Mathew, Induced path transit function, monotone and Peano axioms, Discrete Math. 286 (2004) 185-194, doi: 10.1016/j.disc.2004.02.017.
[8] M. Changat, J. Mathew and H.M. Mulder, The induced path function, monotonicity and betweenness, Discrete Appl. Math. 158 (2010) 426-433, doi: 10.1016/j.dam.2009.10.004.
[9] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs: Fifth Edition (Chapman and Hall, New York, 1996).
[10] F.F. Dragan, F. Nicolai and A. Brandstädt, Convexity and HHD-free graphs, SIAM J. Discrete Math. 12 (1999) 119-135, doi: 10.1137/S0895480195321718.
[11] M. Farber and R.E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Alg. Discrete Meth. 7 (1986) 433-444, doi: 10.1137/0607049.
[12] E. Howorka, A characterization of distance hereditary graphs, Quart. J. Math. Oxford 28 (1977) 417-420, doi: 10.1093/qmath/28.4.417.
[13] B. Jamison and S. Olariu, On the semi-perfect elimination, Adv. in Appl. Math. 9 (1988) 364-376, doi: 10.1016/0196-8858(88)90019-X.
[14] E. Kubicka, G. Kubicki and O.R. Oellermann, Steiner intervals in graphs, Discrete Math. 81 (1998) 181-190, doi: 10.1016/S0166-218X(97)00084-X.
[15] M. Nielsen and O.R. Oellermann, Steiner trees and convex geometries, SIAM J. Discrete Math. 23 (2009) 680-693, doi: 10.1137/070691383.
[16] O.R. Oellermann, Convexity notions in graphs (2006) 1-4. http://www-ma2.upc.edu/seara/wmcgt06/.
[17] O.R. Oellermann and M.L. Puertas, Steiner intervals and Steiner geodetic numbers in distance hereditary graphs, Discrete Math. 307 (2007) 88-96, doi: 10.1016/j.disc.2006.04.037.
[18] M.J.L. Van de Vel, Theory of convex structures (North-Holland, Amsterdam, 1993).