Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_4_a4, author = {Bickle, Allan}, title = {Structural results on maximal k-degenerate graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {659--676}, publisher = {mathdoc}, volume = {32}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a4/} }
Bickle, Allan. Structural results on maximal k-degenerate graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 659-676. http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a4/
[1] A. Bickle, The k-Cores of a graph. Ph.D. Dissertation, Western Michigan University, 2010.
[2] M. Borowiecki, J. Ivančo, P. Mihók and G. Semanišin, Sequences realizable by maximal k-degenerate graphs, J. Graph Theory 19 (1995) 117-124, doi: 10.1002/jgt.3190190112.
[3] G. Chartrand and L. Lesniak, Graphs and Digraphs, (4th ed.) (CRC Press, 2005).
[4] B. Chen, M. Matsumoto, J. Wang, Z. Zhang and J. Zhang, A short proof of Nash-Williams' Theorem for the arboricity of a graph, Graphs Combin. 10 (1994) 27-28, doi: 10.1007/BF01202467.
[5] A.G. Chetwynd and A.J.W. Hilton, Star multigraphs with 3 vertices of maximum degree, Math. Proc. Cambridge Math. Soc. 100 (1986) 303-317, doi: 10.1017/S030500410006610X.
[6] G.A. Dirac, Homomorphism theorems for graphs, Math. Ann. 153 (1964) 69-80, doi: 10.1007/BF01361708.
[7] Z. Filáková, P. Mihók and G. Semanišin, A note on maximal k-degenerate graphs, Math. Slovaca 47 (1997) 489-498.
[8] Z. Goufei, A note on graphs of class 1, Discrete Math. 263 (2003) 339-345, doi: 10.1016/S0012-365X(02)00793-8.
[9] S. Hakimi, J. Mitchem and E. Schmeichel, Short proofs of theorems of Nash-Williams and Tutte, Ars Combin. 50 (1998) 257-266.
[10] R. Klein and J. Schonheim, Decomposition of Kₙ into degenerate graphs, Combinatorics and Graph Theory Hefei 6-27, World Scientific. Singapore (New Jersey, London, Hong Kong, April 1992) 141-155.
[11] D.R. Lick and A.T. White, k-degenerate graphs, Canad. J. Math. 22 (1970) 1082-1096, doi: 10.4153/CJM-1970-125-1.
[12] W. Mader, 3n-5 edges do force a subdivision of K₅, Combinatorica 18 (1998) 569-595, doi: 10.1007/s004930050041.
[13] J. Mitchem, Maximal k-degenerate graphs, Util. Math. 11 (1977) 101-106.
[14] C.St.J.A. Nash-Williams, Decomposition of finite graphs into forests, J. London Math. Soc. 39 (1964) 12, doi: 10.1112/jlms/s1-39.1.12.
[15] H.P. Patil, A note on the edge-arboricity of maximal k-degenerate graphs, Bull. Malays. Math Sci. Soc.(2) 7 (1984) 57-59.
[16] S.B. Seidman, Network structure and minimum degree, Social Networks 5 (1983) 269-287, doi: 10.1016/0378-8733(83)90028-X.
[17] J.M.S. Simões-Pereira, A survey of k-degenerate graphs, Graph Theory Newsletter 5 (1976) 1-7.
[18] West D., Introduction to Graph Theory, (2nd ed.) (Prentice Hall, 2001).