Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_4_a13, author = {Goddard, Wayne and Xu, Honghai}, title = {The s-packing chromatic number of a graph}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {795--806}, publisher = {mathdoc}, volume = {32}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a13/} }
Goddard, Wayne; Xu, Honghai. The s-packing chromatic number of a graph. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 795-806. http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a13/
[1] B. Brešar and S. Klavžar and D.F. Rall, On the packing chromatic number of Cartesian products, hexagonal lattice, and trees, Discrete Appl. Math. 155 (2007) 2303-2311, doi: 10.1016/j.dam.2007.06.008.
[2] J. Ekstein, J.Fiala, P.Holub and B. Lidický, The packing chromatic number of the square lattice is at least 12, preprint.
[3] J. Fiala and P.A. Golovach, Complexity of the packing coloring problem for trees, Discrete Appl. Math. 158 (2010) 771-778, doi: 10.1016/j.dam.2008.09.001.
[4] J. Fiala, S. Klavžar and B. Lidický, The packing chromatic number of infinite product graphs, European J. Combin. 30 (2009) 1101-1113, doi: 10.1016/j.ejc.2008.09.014.
[5] M.R. Garey and D.S. Johnson, Computers and Intractability, A guide to the Theory of NP-completeness (W. H. Freeman and Co., San Francisco, Calif., 1979).
[6] W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, J.M. Harris and D.F. Rall, Broadcast chromatic numbers of graphs, Ars Combin. 8 (2008) 33-49.
[7] C. Sloper, An eccentric coloring of trees, Australas. J. Combin. 29 (2004) 309-321.
[8] R. Soukal and P. Holub, A note on packing chromatic number of the square lattice, Electron. J. Combin. 17 (2010) Note 17, 7.
[9] D.B. West, Introduction to Graph Theory (Prentice Hall, NJ, USA, 2001).