Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_4_a11, author = {Dolati, Ardeshir and Golalizadeh, Somayyeh}, title = {Sharp bounds for the number of matchings in generalized-theta-graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {771--782}, publisher = {mathdoc}, volume = {32}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a11/} }
TY - JOUR AU - Dolati, Ardeshir AU - Golalizadeh, Somayyeh TI - Sharp bounds for the number of matchings in generalized-theta-graphs JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 771 EP - 782 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a11/ LA - en ID - DMGT_2012_32_4_a11 ER -
%0 Journal Article %A Dolati, Ardeshir %A Golalizadeh, Somayyeh %T Sharp bounds for the number of matchings in generalized-theta-graphs %J Discussiones Mathematicae. Graph Theory %D 2012 %P 771-782 %V 32 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a11/ %G en %F DMGT_2012_32_4_a11
Dolati, Ardeshir; Golalizadeh, Somayyeh. Sharp bounds for the number of matchings in generalized-theta-graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 771-782. http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a11/
[1] H. Deng, The largest Hosoya index of (n, n + 1)-graphs, Comput. Math. Appl. 56 (2008) 2499-2506, doi: 10.1016/j.camwa.2008.05.020.
[2] H. Deng and S. Chen, The extremal unicyclic graphs with respect to Hosoya index and Merrifield-Simmons index, MATCH Commun. Math. Comput. Chem. 59 (2008) 171-190.
[3] A. Dolati, M. Haghighat, S. Golalizadeh and M. Safari, The smallest Hosoya index of connected tricyclic graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 57-70.
[4] T. Došlić and F. Måløy, Chain hexagonal cacti: Matchings and independent sets, Discrete Math. 310 (2010) 1676-1690, doi: 10.1016/j.disc.2009.11.026.
[5] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry (Springer-Verlag, Berlin, 1986).
[6] H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn. 44 (1971) 2332-2339, doi: 10.1246/bcsj.44.2332.
[7] H. Hua, Minimizing a class of unicyclic graphs by means of Hosoya index, Math. Comput. Modelling 48 (2008) 940-948, doi: 10.1016/j.mcm.2007.12.003.
[8] J. Ou, On extremal unicyclic molecular graphs with maximal Hosoya index, Discrete Appl. Math. 157 (2009) 391-397, doi: 10.1016/j.dam.2008.06.006.
[9] A. Syropoulos Mathematics of multisets, Multiset Processing, LNCS 2235, C.S. Calude, G. Păun, G. Rozenberg, A. Salomaa (Eds.), (Springer-Verlag, Berlin, 2001) 347-358, doi: 10.1007/3-540-45523-X₁7.
[10] K. Xu, On the Hosoya index and the Merrifield-Simmons index of graphs with a given clique number, Appl. Math. Lett. 23 (2010) 395-398, doi: 10.1016/j.aml.2009.11.005.
[11] H. Zhao and X. Li, On the Fibonacci numbers of trees, Fibonacci Quart. 44 (2006) 32-38.