Sharp bounds for the number of matchings in generalized-theta-graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 771-782.

Voir la notice de l'article provenant de la source Library of Science

A generalized-theta-graph is a graph consisting of a pair of end vertices joined by k (k ≥ 3) internally disjoint paths. We denote the family of all the n-vertex generalized-theta-graphs with k paths between end vertices by Θⁿₖ. In this paper, we determine the sharp lower bound and the sharp upper bound for the total number of matchings of generalized-theta-graphs in Θⁿₖ. In addition, we characterize the graphs in this class of graphs with respect to the mentioned bounds.
Keywords: generalized-theta-graph, matching, Fibonacci number, Hosoya index
@article{DMGT_2012_32_4_a11,
     author = {Dolati, Ardeshir and Golalizadeh, Somayyeh},
     title = {Sharp bounds for the number of matchings in generalized-theta-graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {771--782},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a11/}
}
TY  - JOUR
AU  - Dolati, Ardeshir
AU  - Golalizadeh, Somayyeh
TI  - Sharp bounds for the number of matchings in generalized-theta-graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 771
EP  - 782
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a11/
LA  - en
ID  - DMGT_2012_32_4_a11
ER  - 
%0 Journal Article
%A Dolati, Ardeshir
%A Golalizadeh, Somayyeh
%T Sharp bounds for the number of matchings in generalized-theta-graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 771-782
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a11/
%G en
%F DMGT_2012_32_4_a11
Dolati, Ardeshir; Golalizadeh, Somayyeh. Sharp bounds for the number of matchings in generalized-theta-graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 771-782. http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a11/

[1] H. Deng, The largest Hosoya index of (n, n + 1)-graphs, Comput. Math. Appl. 56 (2008) 2499-2506, doi: 10.1016/j.camwa.2008.05.020.

[2] H. Deng and S. Chen, The extremal unicyclic graphs with respect to Hosoya index and Merrifield-Simmons index, MATCH Commun. Math. Comput. Chem. 59 (2008) 171-190.

[3] A. Dolati, M. Haghighat, S. Golalizadeh and M. Safari, The smallest Hosoya index of connected tricyclic graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 57-70.

[4] T. Došlić and F. Måløy, Chain hexagonal cacti: Matchings and independent sets, Discrete Math. 310 (2010) 1676-1690, doi: 10.1016/j.disc.2009.11.026.

[5] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry (Springer-Verlag, Berlin, 1986).

[6] H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn. 44 (1971) 2332-2339, doi: 10.1246/bcsj.44.2332.

[7] H. Hua, Minimizing a class of unicyclic graphs by means of Hosoya index, Math. Comput. Modelling 48 (2008) 940-948, doi: 10.1016/j.mcm.2007.12.003.

[8] J. Ou, On extremal unicyclic molecular graphs with maximal Hosoya index, Discrete Appl. Math. 157 (2009) 391-397, doi: 10.1016/j.dam.2008.06.006.

[9] A. Syropoulos Mathematics of multisets, Multiset Processing, LNCS 2235, C.S. Calude, G. Păun, G. Rozenberg, A. Salomaa (Eds.), (Springer-Verlag, Berlin, 2001) 347-358, doi: 10.1007/3-540-45523-X₁7.

[10] K. Xu, On the Hosoya index and the Merrifield-Simmons index of graphs with a given clique number, Appl. Math. Lett. 23 (2010) 395-398, doi: 10.1016/j.aml.2009.11.005.

[11] H. Zhao and X. Li, On the Fibonacci numbers of trees, Fibonacci Quart. 44 (2006) 32-38.