The i-chords of cycles and paths
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 607-615.

Voir la notice de l'article provenant de la source Library of Science

An i-chord of a cycle or path is an edge whose endpoints are a distance i ≥ 2 apart along the cycle or path. Motivated by many standard graph classes being describable by the existence of chords, we investigate what happens when i-chords are required for specific values of i. Results include the following: A graph is strongly chordal if and only if, for i ∈ 4,6, every cycle C with |V(C)| ≥ i has an (i/2)-chord. A graph is a threshold graph if and only if, for i ∈ 4,5, every path P with |V(P)| ≥ i has an (i -2)-chord.
Keywords: chord, chordal graph, strongly chordal graph, ptolemaic graph, trivially perfect graph, threshold graph
@article{DMGT_2012_32_4_a0,
     author = {McKee, Terry},
     title = {The i-chords of cycles and paths},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {607--615},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a0/}
}
TY  - JOUR
AU  - McKee, Terry
TI  - The i-chords of cycles and paths
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 607
EP  - 615
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a0/
LA  - en
ID  - DMGT_2012_32_4_a0
ER  - 
%0 Journal Article
%A McKee, Terry
%T The i-chords of cycles and paths
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 607-615
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a0/
%G en
%F DMGT_2012_32_4_a0
McKee, Terry. The i-chords of cycles and paths. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 607-615. http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a0/

[1] H.-J. Bandelt and H.M. Mulder, Distance-hereditary graphs, J. Combin. Theory (B) 41 (1986) 182-208, doi: 10.1016/0095-8956(86)90043-2.

[2] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey (Society for Industrial and Applied Mathematics, Philadelphia, 1999).

[3] M.B. Cozzens and L.L. Kelleher, Dominating cliques in graphs, Discrete Math. 86 (1990) 101-116, doi: 10.1016/0012-365X(90)90353-J.

[4] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983) 173-189, doi: 10.1016/0012-365X(83)90154-1.

[5] E. Howorka, A characterization of ptolemaic graphs, J. Graph Theory 5 (1981) 323-331, doi: 10.1002/jgt.3190050314.

[6] J. Liu and H.S. Zhou, Dominating subgraphs in graphs with some forbidden structures, Discrete Math. 135 (1994) 163-168, doi: 10.1016/0012-365X(93)E0111-G.

[7] N.V.R. Mahadev and U.N. Peled, Threshold Graphs and Related Topics (North-Holland, Amsterdam, 1995).

[8] A. McKee, Constrained chords in strongly chordal and distance-hereditary graphs, Utilitas Math. 87 (2012) 3-12.

[9] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory (Society for Industrial and Applied Mathematics, Philadelphia, 1999).

[10] E.S. Wolk, The comparability graph of a tree, Proc. Amer. Math. Soc. 13 (1962) 789-795, doi: 10.1090/S0002-9939-1962-0172273-0.