The i-chords of cycles and paths
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 607-615

Voir la notice de l'article provenant de la source Library of Science

An i-chord of a cycle or path is an edge whose endpoints are a distance i ≥ 2 apart along the cycle or path. Motivated by many standard graph classes being describable by the existence of chords, we investigate what happens when i-chords are required for specific values of i. Results include the following: A graph is strongly chordal if and only if, for i ∈ 4,6, every cycle C with |V(C)| ≥ i has an (i/2)-chord. A graph is a threshold graph if and only if, for i ∈ 4,5, every path P with |V(P)| ≥ i has an (i -2)-chord.
Keywords: chord, chordal graph, strongly chordal graph, ptolemaic graph, trivially perfect graph, threshold graph
@article{DMGT_2012_32_4_a0,
     author = {McKee, Terry},
     title = {The i-chords of cycles and paths},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {607--615},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a0/}
}
TY  - JOUR
AU  - McKee, Terry
TI  - The i-chords of cycles and paths
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 607
EP  - 615
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a0/
LA  - en
ID  - DMGT_2012_32_4_a0
ER  - 
%0 Journal Article
%A McKee, Terry
%T The i-chords of cycles and paths
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 607-615
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a0/
%G en
%F DMGT_2012_32_4_a0
McKee, Terry. The i-chords of cycles and paths. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 607-615. http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a0/