Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_4_a0, author = {McKee, Terry}, title = {The i-chords of cycles and paths}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {607--615}, publisher = {mathdoc}, volume = {32}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a0/} }
McKee, Terry. The i-chords of cycles and paths. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 4, pp. 607-615. http://geodesic.mathdoc.fr/item/DMGT_2012_32_4_a0/
[1] H.-J. Bandelt and H.M. Mulder, Distance-hereditary graphs, J. Combin. Theory (B) 41 (1986) 182-208, doi: 10.1016/0095-8956(86)90043-2.
[2] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey (Society for Industrial and Applied Mathematics, Philadelphia, 1999).
[3] M.B. Cozzens and L.L. Kelleher, Dominating cliques in graphs, Discrete Math. 86 (1990) 101-116, doi: 10.1016/0012-365X(90)90353-J.
[4] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983) 173-189, doi: 10.1016/0012-365X(83)90154-1.
[5] E. Howorka, A characterization of ptolemaic graphs, J. Graph Theory 5 (1981) 323-331, doi: 10.1002/jgt.3190050314.
[6] J. Liu and H.S. Zhou, Dominating subgraphs in graphs with some forbidden structures, Discrete Math. 135 (1994) 163-168, doi: 10.1016/0012-365X(93)E0111-G.
[7] N.V.R. Mahadev and U.N. Peled, Threshold Graphs and Related Topics (North-Holland, Amsterdam, 1995).
[8] A. McKee, Constrained chords in strongly chordal and distance-hereditary graphs, Utilitas Math. 87 (2012) 3-12.
[9] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory (Society for Industrial and Applied Mathematics, Philadelphia, 1999).
[10] E.S. Wolk, The comparability graph of a tree, Proc. Amer. Math. Soc. 13 (1962) 789-795, doi: 10.1090/S0002-9939-1962-0172273-0.