Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_3_a8, author = {Jones, Ryan and Zhang, Ping}, title = {Nowhere-zero modular edge-graceful graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {487--505}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a8/} }
Jones, Ryan; Zhang, Ping. Nowhere-zero modular edge-graceful graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 487-505. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a8/
[1] L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory (B) 94 (2005) 237-244, doi: 10.1016/j.jctb.2005.01.001.
[2] P.N. Balister, E. Györi, J. Lehel and R.H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007) 237-250, doi: 10.1137/S0895480102414107.
[3] G. Chartrand, L. Lesniak and P. Zhang, Graphs Digraphs ( Fifth Edition, Chapman Hall/CRC, Boca Raton, FL, 2010).
[4] G. Chartrand, F. Okamoto and P. Zhang, The sigma chromatic number of a graph, Graphs Combin. 26 (2010) 755-773, doi: 10.1007/s00373-010-0952-7.
[5] G. Chartrand and P. Zhang, Chromatic Graph Theory (Chapman Hall/CRC Press, Boca Raton, 2009).
[6] E. Györi, M. Horňák, C. Palmer and M. Woźniak, General neighbor-distinguishing index of a graph, Discrete Math. 308 (2008) 827-831, doi: 10.1016/j.disc.2007.07.046.
[7] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2009) #DS6.
[8] R.B. Gnana Jothi, Topics in Graph Theory, Ph.D. Thesis, Madurai (Kamaraj University, 1991).
[9] S.W. Golomb, How to number a graph, Graph Theory and Computing, (Academic Press, New York, 1972) 23-37.
[10] R. Jones, K. Kolasinski, F. Okamoto and P. Zhang, Modular neighbor-distinguishing edge colorings of graphs, J. Combin. Math. Combin. Comput. 76 (2011) 159-175.
[11] R. Jones, K. Kolasinski and P. Zhang, A proof of the modular edge-graceful trees conjecture, J. Combin. Math. Combin. Comput., to appear.
[12] S.P. Lo, On edge-graceful labelings of graphs, Congr. Numer. 50 (1985) 231-241.
[13] F. Okamoto, E. Salehi and P. Zhang, A checkerboard problem and modular colorings of graphs, Bull. Inst. Combin Appl. 58 (2010) 29-47.
[14] F. Okamoto, E. Salehi and P. Zhang, A solution to the checkerboard problem, Intern. J. Comput. Appl. Math. 5 (2010) 447-458.
[15] A. Rosa, On certain valuations of the vertices of a graph in: Theory of Graphs, Proc. Internat. Sympos. Rome, 1966 (Gordon and Breach, New York, 1967) 349-355.
[16] Z. Zhang, L. Liu and J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002) 623-626, doi: 10.1016/S0893-9659(02)80015-5.