Nowhere-zero modular edge-graceful graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 487-505.

Voir la notice de l'article provenant de la source Library of Science

For a connected graph G of order n ≥ 3, let f: E(G) → ℤₙ be an edge labeling of G. The vertex labeling f': V(G) → ℤₙ induced by f is defined as f'(u) = ∑_v ∈ N(u) f(uv), where the sum is computed in ℤₙ. If f' is one-to-one, then f is called a modular edge-graceful labeling and G is a modular edge-graceful graph. A modular edge-graceful labeling f of G is nowhere-zero if f(e) ≠ 0 for all e ∈ E(G) and in this case, G is a nowhere-zero modular edge-graceful graph. It is shown that a connected graph G of order n ≥ 3 is nowhere-zero modular edge-graceful if and only if n ≢ 2 mod 4, G ≠ K₃ and G is not a star of even order. For a connected graph G of order n ≥ 3, the smallest integer k ≥ n for which there exists an edge labeling f: E(G) → ℤₖ - 0 such that the induced vertex labeling f' is one-to-one is referred to as the nowhere-zero modular edge-gracefulness of G and this number is determined for every connected graph of order at least 3.
Keywords: modular edge-graceful labelings and graphs, nowhere-zero labelings, modular edge-gracefulness
@article{DMGT_2012_32_3_a8,
     author = {Jones, Ryan and Zhang, Ping},
     title = {Nowhere-zero modular edge-graceful graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {487--505},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a8/}
}
TY  - JOUR
AU  - Jones, Ryan
AU  - Zhang, Ping
TI  - Nowhere-zero modular edge-graceful graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 487
EP  - 505
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a8/
LA  - en
ID  - DMGT_2012_32_3_a8
ER  - 
%0 Journal Article
%A Jones, Ryan
%A Zhang, Ping
%T Nowhere-zero modular edge-graceful graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 487-505
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a8/
%G en
%F DMGT_2012_32_3_a8
Jones, Ryan; Zhang, Ping. Nowhere-zero modular edge-graceful graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 487-505. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a8/

[1] L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory (B) 94 (2005) 237-244, doi: 10.1016/j.jctb.2005.01.001.

[2] P.N. Balister, E. Györi, J. Lehel and R.H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007) 237-250, doi: 10.1137/S0895480102414107.

[3] G. Chartrand, L. Lesniak and P. Zhang, Graphs Digraphs ( Fifth Edition, Chapman Hall/CRC, Boca Raton, FL, 2010).

[4] G. Chartrand, F. Okamoto and P. Zhang, The sigma chromatic number of a graph, Graphs Combin. 26 (2010) 755-773, doi: 10.1007/s00373-010-0952-7.

[5] G. Chartrand and P. Zhang, Chromatic Graph Theory (Chapman Hall/CRC Press, Boca Raton, 2009).

[6] E. Györi, M. Horňák, C. Palmer and M. Woźniak, General neighbor-distinguishing index of a graph, Discrete Math. 308 (2008) 827-831, doi: 10.1016/j.disc.2007.07.046.

[7] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2009) #DS6.

[8] R.B. Gnana Jothi, Topics in Graph Theory, Ph.D. Thesis, Madurai (Kamaraj University, 1991).

[9] S.W. Golomb, How to number a graph, Graph Theory and Computing, (Academic Press, New York, 1972) 23-37.

[10] R. Jones, K. Kolasinski, F. Okamoto and P. Zhang, Modular neighbor-distinguishing edge colorings of graphs, J. Combin. Math. Combin. Comput. 76 (2011) 159-175.

[11] R. Jones, K. Kolasinski and P. Zhang, A proof of the modular edge-graceful trees conjecture, J. Combin. Math. Combin. Comput., to appear.

[12] S.P. Lo, On edge-graceful labelings of graphs, Congr. Numer. 50 (1985) 231-241.

[13] F. Okamoto, E. Salehi and P. Zhang, A checkerboard problem and modular colorings of graphs, Bull. Inst. Combin Appl. 58 (2010) 29-47.

[14] F. Okamoto, E. Salehi and P. Zhang, A solution to the checkerboard problem, Intern. J. Comput. Appl. Math. 5 (2010) 447-458.

[15] A. Rosa, On certain valuations of the vertices of a graph in: Theory of Graphs, Proc. Internat. Sympos. Rome, 1966 (Gordon and Breach, New York, 1967) 349-355.

[16] Z. Zhang, L. Liu and J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002) 623-626, doi: 10.1016/S0893-9659(02)80015-5.