Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_3_a6, author = {Sheikholeslami, Seyed and Volkmann, Lutz}, title = {The total {k}-domatic number of digraphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {461--471}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a6/} }
Sheikholeslami, Seyed; Volkmann, Lutz. The total {k}-domatic number of digraphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 461-471. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a6/
[1] H. Aram, S.M. Sheikholeslami and L. Volkmann, On the total {k}-domination and {k}-domatic number of a graph, Bull. Malays. Math. Sci. Soc. (to appear).
[2] J. Chen, X. Hou and N. Li, The total {k}-domatic number of wheels and complete graphs, J. Comb. Optim. (to appear).
[3] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304.
[4] E.J. Cockayne, T.W. Haynes, S.T. Hedetniemi, Z. Shanchao and B. Xu, Extremal graphs for inequalities involving domination parameters, Discrete Math. 216 (2000) 1-10, doi: 10.1016/S0012-365X(99)00251-4.
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in graphs (New York: Marcel Dekker, Inc., 1998).
[6] K. Jacob and S. Arumugam, Domatic number of a digraph, Bull. Kerala Math. Assoc. 2 (2005) 93-103.
[7] N. Li and X. Hou, On the total {k}-domination number of Cartesian products of graphs, J. Comb. Optim. 18 (2009) 173-178, doi: 10.1007/s10878-008-9144-2.
[8] S.M. Sheikholeslami and L. Volkmann, The total {k}-domatic number of a graph, J. Comb. Optim. 23 (2012) 252-260, doi: 10.1007/s10878-010-9352-4.