The total {k}-domatic number of digraphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 461-471.

Voir la notice de l'article provenant de la source Library of Science

For a positive integer k, a total k-dominating function of a digraph D is a function f from the vertex set V(D) to the set 0,1,2, ...,k such that for any vertex v ∈ V(D), the condition ∑_u ∈ N^ -(v)f(u) ≥ k is fulfilled, where N¯(v) consists of all vertices of D from which arcs go into v. A set f₁,f₂, ...,f_d of total k-dominating functions of D with the property that ∑_i = 1^d f_i(v) ≤ k for each v ∈ V(D), is called a total k-dominating family (of functions) on D. The maximum number of functions in a total k-dominating family on D is the total k-domatic number of D, denoted by dₜ^k(D). Note that dₜ^1(D) is the classic total domatic number dₜ(D). In this paper we initiate the study of the total k-domatic number in digraphs, and we present some bounds for dₜ^k(D). Some of our results are extensions of well-know properties of the total domatic number of digraphs and the total k-domatic number of graphs.
Keywords: digraph, total {k}-dominating function, total {k}-domination number, total {k}-domatic number
@article{DMGT_2012_32_3_a6,
     author = {Sheikholeslami, Seyed and Volkmann, Lutz},
     title = {The total {k}-domatic number of digraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {461--471},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a6/}
}
TY  - JOUR
AU  - Sheikholeslami, Seyed
AU  - Volkmann, Lutz
TI  - The total {k}-domatic number of digraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 461
EP  - 471
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a6/
LA  - en
ID  - DMGT_2012_32_3_a6
ER  - 
%0 Journal Article
%A Sheikholeslami, Seyed
%A Volkmann, Lutz
%T The total {k}-domatic number of digraphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 461-471
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a6/
%G en
%F DMGT_2012_32_3_a6
Sheikholeslami, Seyed; Volkmann, Lutz. The total {k}-domatic number of digraphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 461-471. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a6/

[1] H. Aram, S.M. Sheikholeslami and L. Volkmann, On the total {k}-domination and {k}-domatic number of a graph, Bull. Malays. Math. Sci. Soc. (to appear).

[2] J. Chen, X. Hou and N. Li, The total {k}-domatic number of wheels and complete graphs, J. Comb. Optim. (to appear).

[3] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304.

[4] E.J. Cockayne, T.W. Haynes, S.T. Hedetniemi, Z. Shanchao and B. Xu, Extremal graphs for inequalities involving domination parameters, Discrete Math. 216 (2000) 1-10, doi: 10.1016/S0012-365X(99)00251-4.

[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in graphs (New York: Marcel Dekker, Inc., 1998).

[6] K. Jacob and S. Arumugam, Domatic number of a digraph, Bull. Kerala Math. Assoc. 2 (2005) 93-103.

[7] N. Li and X. Hou, On the total {k}-domination number of Cartesian products of graphs, J. Comb. Optim. 18 (2009) 173-178, doi: 10.1007/s10878-008-9144-2.

[8] S.M. Sheikholeslami and L. Volkmann, The total {k}-domatic number of a graph, J. Comb. Optim. 23 (2012) 252-260, doi: 10.1007/s10878-010-9352-4.