Fractional distance domination in graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 449-459.

Voir la notice de l'article provenant de la source Library of Science

Let G = (V,E) be a connected graph and let k be a positive integer with k ≤ rad(G). A subset D ⊆ V is called a distance k-dominating set of G if for every v ∈ V - D, there exists a vertex u ∈ D such that d(u,v) ≤ k. In this paper we study the fractional version of distance k-domination and related parameters.
Keywords: domination, distance k-domination, distance k-dominating function, k-packing, fractional distance k-domination
@article{DMGT_2012_32_3_a5,
     author = {Arumugam, S. and Mathew, Varughese and Karuppasamy, K.},
     title = {Fractional distance domination in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {449--459},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a5/}
}
TY  - JOUR
AU  - Arumugam, S.
AU  - Mathew, Varughese
AU  - Karuppasamy, K.
TI  - Fractional distance domination in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 449
EP  - 459
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a5/
LA  - en
ID  - DMGT_2012_32_3_a5
ER  - 
%0 Journal Article
%A Arumugam, S.
%A Mathew, Varughese
%A Karuppasamy, K.
%T Fractional distance domination in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 449-459
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a5/
%G en
%F DMGT_2012_32_3_a5
Arumugam, S.; Mathew, Varughese; Karuppasamy, K. Fractional distance domination in graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 449-459. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a5/

[1] S. Arumugam, K. Karuppasamy and I. Sahul Hamid, Fractional global domination in graphs, Discuss. Math. Graph Theory 30 (2010) 33-44, doi: 10.7151/dmgt.1474.

[2] E.J. Cockayne, G. Fricke, S.T. Hedetniemi and C.M. Mynhardt, Properties of minimal dominating functions of graphs, Ars Combin. 41 (1995) 107-115.

[3] G. Chartrand and L. Lesniak, Graphs Digraphs, Fourth Edition, Chapman Hall/CRC (2005).

[4] G.S. Domke, S.T. Hedetniemi and R.C. Laskar, Generalized packings and coverings of graphs, Congr. Numer. 62 (1988) 259-270.

[5] G.S. Domke, S.T. Hedetniemi and R.C. Laskar, Fractional packings, coverings, and irredundance in graphs, Congr. Numer. 66 (1988) 227-238.

[6] D.L. Grinstead and P.J. Slater, Fractional domination and fractional packings in graphs, Congr. Numer. 71 (1990) 153-172.

[7] E.O. Hare, k-weight domination and fractional domination of Pₘ × Pₙ, Congr. Numer. 78 (1990) 71-80.

[8] J.H. Hattingh, M.A. Henning and J.L. Walters, On the computational complexity of upper distance fractional domination, Australas. J. Combin. 7 (1993) 133-144.

[9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in graphs: Advanced Topics (Marcel Dekker, New York, 1998).

[11] S.M. Hedetniemi, S.T. Hedetniemi and T.V. Wimer, Linear time resource allocation algorithms for trees, Technical report URI -014, Department of Mathematics, Clemson University (1987).

[12] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225-233.

[13] R.R. Rubalcaba, A. Schneider and P.J. Slater, A survey on graphs which have equal domination and closed neighborhood packing numbers, AKCE J. Graphs. Combin. 3 (2006) 93-114.

[14] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory: A Rational Approach to the Theory of Graphs (John Wiley Sons, New York, 1997).

[15] D. Vukičević and A. Klobučar, k-dominating sets on linear benzenoids and on the infinite hexagonal grid, Croatica Chemica Acta 80 (2007) 187-191.