On the total k-domination number of graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 419-426.

Voir la notice de l'article provenant de la source Library of Science

Let k be a positive integer and let G = (V,E) be a simple graph. The k-tuple domination number γ_×k(G) of G is the minimum cardinality of a k-tuple dominating set S, a set that for every vertex v ∈ V, |N_G[v] ∩ S| ≥ k. Also the total k-domination number γ_×k,t(G) of G is the minimum cardinality of a total k -dominating set S, a set that for every vertex v ∈ V, |N_G(v) ∩ S| ≥ k. The k-transversal number τₖ(H) of a hypergraph H is the minimum size of a subset S ⊆ V(H) such that |S ∩e | ≥ k for every edge e ∈ E(H).
Keywords: total k-domination (k-tuple total domination) number, k-tuple domination number, k-transversal number
@article{DMGT_2012_32_3_a2,
     author = {Kazemi, Adel},
     title = {On the total k-domination number of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {419--426},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a2/}
}
TY  - JOUR
AU  - Kazemi, Adel
TI  - On the total k-domination number of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 419
EP  - 426
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a2/
LA  - en
ID  - DMGT_2012_32_3_a2
ER  - 
%0 Journal Article
%A Kazemi, Adel
%T On the total k-domination number of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 419-426
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a2/
%G en
%F DMGT_2012_32_3_a2
Kazemi, Adel. On the total k-domination number of graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 419-426. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a2/

[1] M. El-Zahar, S. Gravier and A. Klobucar, On the total domination number of cross products of graphs, Discrete Math. 308 (2008) 2025-2029, doi: 10.1016/j.disc.2007.04.034.

[2] F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201-213.

[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs; Advanced Topics (Marcel Dekker, New York, 1998).

[5] M.A. Henning and A.P. Kazemi, k-tuple total domination in graphs, Discrete Appl. Math. 158 (2010) 1006-1011, doi: 10.1016/j.dam.2010.01.009.

[6] M.A. Henning and A.P. Kazemi, k-tuple total domination in cross products of graphs, J. Comb. Optim. 2011, doi: 10.1007/s10878-011-9389-z.

[7] V. Chvátal and C. Mc Diarmid, Small transversals in hypergraphs, Combinatorica 12 (1992) 19-26, doi: 10.1007/BF01191201.