Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_3_a15, author = {Lattanzio, John and Zheng, Quan}, title = {Generalized matrix graphs and completely independent critical cliques in any dimension}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {583--602}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a15/} }
TY - JOUR AU - Lattanzio, John AU - Zheng, Quan TI - Generalized matrix graphs and completely independent critical cliques in any dimension JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 583 EP - 602 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a15/ LA - en ID - DMGT_2012_32_3_a15 ER -
%0 Journal Article %A Lattanzio, John %A Zheng, Quan %T Generalized matrix graphs and completely independent critical cliques in any dimension %J Discussiones Mathematicae. Graph Theory %D 2012 %P 583-602 %V 32 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a15/ %G en %F DMGT_2012_32_3_a15
Lattanzio, John; Zheng, Quan. Generalized matrix graphs and completely independent critical cliques in any dimension. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 583-602. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a15/
[1] J. Balogh, A.V. Kostochka, N. Prince, and M. Stiebitz, The Erdös-Lovász Tihany conjecture for quasi-line graphs, Discrete Math., 309 (2009) 3985-3991, doi: 10.1016/j.disc.2008.11.016.
[2] R.A. Brualdi, Introductory Combinatorics, 5th ed, Pearson, (Upper Saddle River, 2010).
[3] G. Chartrand, L. Lesniak, and P. Zhang, Graphs and Digraphs, 5th ed, CRC Press, (Boca Raton, 2010).
[4] G.A. Dirac, A theorem of R.L. Brooks and a conjecture of H. Hadwiger, Proc. Lond. Math. Soc. (3), 7 (1957) 161-195, doi: 10.1112/plms/s3-7.1.161.
[5] G.A. Dirac, The number of edges in critical graphs, J. Reine Angew. Math. 268/269 (1974) 150-164.
[6] P. Erdös, Problems, in: Theory of Graphs, Proc. Colloq., Tihany, (Academic Press, New York, 1968) 361-362.
[7] T.R. Jensen, Dense critical and vertex-critical graphs, Discrete Math. 258 (2002) 63-84, doi: 10.1016/S0012-365X(02)00262-5.
[8] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley-Interscience, New York, 1995).
[9] K.-I. Kawarabayashi, A.S. Pedersen and B. Toft, Double-critical graphs and complete minors, Retrieved from http://adsabs.harvard.edu/abs/2008arXiv0810.3133K.
[10] A.V. Kostochka and M. Stiebitz, Colour-critical graphs with few edges, Discrete Math. 191 (1998) 125-137, doi: 10.1016/S0012-365X(98)00100-9.
[11] A.V. Kostochka and M. Stiebitz, On the number of edges in colour-critical graphs and hypergraphs, Combinatorica 20 (2000) 521-530, doi: 10.1007/s004930070005.
[12] J.J. Lattanzio, Completely independent critical cliques, J. Combin. Math. Combin. Comput. 62 (2007) 165-170.
[13] J.J. Lattanzio, Edge double-critical graphs, Journal of Mathematics and Statistics 6 (3) (2010) 357-358, doi: 10.3844/jmssp.2010.357.358.
[14] M. Stiebitz, K₅ is the only double-critical 5 -chromatic graph, Discrete Math. 64 (1987) 91-93, doi: 10.1016/0012-365X(87)90242-1.
[15] B. Toft, On the maximal number of edges of critical k -chromatic graphs, Studia Sci. Math. Hungar. 5 (1970) 461-470.