Light edges in 1-planar graphs with prescribed minimum degree
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 545-556.

Voir la notice de l'article provenant de la source Library of Science

A graph is called 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. We prove that each 1-planar graph of minimum degree δ ≥ 4 contains an edge with degrees of its endvertices of type (4, ≤ 13) or (5, ≤ 9) or (6, ≤ 8) or (7,7). We also show that for δ ≥ 5 these bounds are best possible and that the list of edges is minimal (in the sense that, for each of the considered edge types there are 1-planar graphs whose set of types of edges contains just the selected edge type).
Keywords: light edge, 1-planar graph
@article{DMGT_2012_32_3_a12,
     author = {Hud\'ak, D\'avid and \v{S}ugerek, Peter},
     title = {Light edges in 1-planar graphs with prescribed minimum degree},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {545--556},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a12/}
}
TY  - JOUR
AU  - Hudák, Dávid
AU  - Šugerek, Peter
TI  - Light edges in 1-planar graphs with prescribed minimum degree
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 545
EP  - 556
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a12/
LA  - en
ID  - DMGT_2012_32_3_a12
ER  - 
%0 Journal Article
%A Hudák, Dávid
%A Šugerek, Peter
%T Light edges in 1-planar graphs with prescribed minimum degree
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 545-556
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a12/
%G en
%F DMGT_2012_32_3_a12
Hudák, Dávid; Šugerek, Peter. Light edges in 1-planar graphs with prescribed minimum degree. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 545-556. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a12/

[1] O.V. Borodin, Precise lower bound for the number of edges of minor weight in planar maps, Math. Slovaca 42 (1992) 129-142.

[2] R. Diestel, Graph Theory, Springer, Graduate Texts in Mathematics 173 (2nd ed., Springer-Verlag, New York, 2000).

[3] I. Fabrici and S. Jendrol', An inequality concerning edges of minor weight in convex 3-polytopes, Discuss. Math. Graph Theory 16 (1996) 81-87, doi: 10.7151/dmgt.1024.

[4] I. Fabrici and T. Madaras, The structure of 1-planar graphs, Discrete Math. 307 (2007) 854-865, doi: 10.1016/j.disc.2005.11.056.

[5] D. Hudák and T. Madaras, On local properties of 1-planar graphs with high minimum degree, Ars Math. Contemp. 4 (2011) 245-254.

[6] D. Hudák and T. Madaras, On local structure of 1-planar graphs of minimum degree 5 and girth 4, Discuss. Math. Graph Theory 29 (2009) 385-400, doi: 10.7151/dmgt.1454.

[7] J. Ivančo, The weight of a graph, Ann. Discrete Math. 51 (1992) 113-116, doi: 10.1016/S0167-5060(08)70614-9.

[8] S. Jendrol' and I. Schiermeyer, On max-min problem concerning weights of edges, Combinatorica 21 (2001) 351-359, doi: 10.1007/s004930100001.

[9] S. Jendrol' and M. Tuhársky, A Kotzig type theorem for non-orientable surfaces, Math. Slovaca 56 (2006) 245-253.

[10] S. Jendrol', M. Tuhársky and H.-J. Voss, A Kotzig type theorem for large maps on surfaces, Tatra Mt. Math. Publ. 27 (2003) 153-162.

[11] S. Jendrol' and H.-J. Voss, Light subgraphs of graphs embedded in plane and projective plane - a survey, Preprint Inst. of Algebra MATH-AL-02-2001, TU Dresden.

[12] S. Jendrol' and H.-J. Voss, Light subgraph.

[13] E. Jucovič, Convex polytopes, Veda Bratislava, 1981 (in Slovak).

[14] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Math. Slovaca 5 (1955) 111-113.

[15] G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Sem. Univ. Hamburg 29 (1965) 107-117, doi: 10.1007/BF02996313.

[16] D.P. Sanders, On light edges and triangles in projective planar graphs, J. Graph Theory 21 (1996) 335-342.