Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_3_a12, author = {Hud\'ak, D\'avid and \v{S}ugerek, Peter}, title = {Light edges in 1-planar graphs with prescribed minimum degree}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {545--556}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a12/} }
TY - JOUR AU - Hudák, Dávid AU - Šugerek, Peter TI - Light edges in 1-planar graphs with prescribed minimum degree JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 545 EP - 556 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a12/ LA - en ID - DMGT_2012_32_3_a12 ER -
Hudák, Dávid; Šugerek, Peter. Light edges in 1-planar graphs with prescribed minimum degree. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 545-556. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a12/
[1] O.V. Borodin, Precise lower bound for the number of edges of minor weight in planar maps, Math. Slovaca 42 (1992) 129-142.
[2] R. Diestel, Graph Theory, Springer, Graduate Texts in Mathematics 173 (2nd ed., Springer-Verlag, New York, 2000).
[3] I. Fabrici and S. Jendrol', An inequality concerning edges of minor weight in convex 3-polytopes, Discuss. Math. Graph Theory 16 (1996) 81-87, doi: 10.7151/dmgt.1024.
[4] I. Fabrici and T. Madaras, The structure of 1-planar graphs, Discrete Math. 307 (2007) 854-865, doi: 10.1016/j.disc.2005.11.056.
[5] D. Hudák and T. Madaras, On local properties of 1-planar graphs with high minimum degree, Ars Math. Contemp. 4 (2011) 245-254.
[6] D. Hudák and T. Madaras, On local structure of 1-planar graphs of minimum degree 5 and girth 4, Discuss. Math. Graph Theory 29 (2009) 385-400, doi: 10.7151/dmgt.1454.
[7] J. Ivančo, The weight of a graph, Ann. Discrete Math. 51 (1992) 113-116, doi: 10.1016/S0167-5060(08)70614-9.
[8] S. Jendrol' and I. Schiermeyer, On max-min problem concerning weights of edges, Combinatorica 21 (2001) 351-359, doi: 10.1007/s004930100001.
[9] S. Jendrol' and M. Tuhársky, A Kotzig type theorem for non-orientable surfaces, Math. Slovaca 56 (2006) 245-253.
[10] S. Jendrol', M. Tuhársky and H.-J. Voss, A Kotzig type theorem for large maps on surfaces, Tatra Mt. Math. Publ. 27 (2003) 153-162.
[11] S. Jendrol' and H.-J. Voss, Light subgraphs of graphs embedded in plane and projective plane - a survey, Preprint Inst. of Algebra MATH-AL-02-2001, TU Dresden.
[12] S. Jendrol' and H.-J. Voss, Light subgraph.
[13] E. Jucovič, Convex polytopes, Veda Bratislava, 1981 (in Slovak).
[14] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Math. Slovaca 5 (1955) 111-113.
[15] G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Sem. Univ. Hamburg 29 (1965) 107-117, doi: 10.1007/BF02996313.
[16] D.P. Sanders, On light edges and triangles in projective planar graphs, J. Graph Theory 21 (1996) 335-342.