Light edges in 1-planar graphs with prescribed minimum degree
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 545-556

Voir la notice de l'article provenant de la source Library of Science

A graph is called 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. We prove that each 1-planar graph of minimum degree δ ≥ 4 contains an edge with degrees of its endvertices of type (4, ≤ 13) or (5, ≤ 9) or (6, ≤ 8) or (7,7). We also show that for δ ≥ 5 these bounds are best possible and that the list of edges is minimal (in the sense that, for each of the considered edge types there are 1-planar graphs whose set of types of edges contains just the selected edge type).
Keywords: light edge, 1-planar graph
@article{DMGT_2012_32_3_a12,
     author = {Hud\'ak, D\'avid and \v{S}ugerek, Peter},
     title = {Light edges in 1-planar graphs with prescribed minimum degree},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {545--556},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a12/}
}
TY  - JOUR
AU  - Hudák, Dávid
AU  - Šugerek, Peter
TI  - Light edges in 1-planar graphs with prescribed minimum degree
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 545
EP  - 556
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a12/
LA  - en
ID  - DMGT_2012_32_3_a12
ER  - 
%0 Journal Article
%A Hudák, Dávid
%A Šugerek, Peter
%T Light edges in 1-planar graphs with prescribed minimum degree
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 545-556
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a12/
%G en
%F DMGT_2012_32_3_a12
Hudák, Dávid; Šugerek, Peter. Light edges in 1-planar graphs with prescribed minimum degree. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 545-556. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a12/