Stable sets for $(P₆,K_{2,3})$-free graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 387-401

Voir la notice de l'article provenant de la source Library of Science

The Maximum Stable Set (MS) problem is a well known NP-hard problem. However different graph classes for which MS can be efficiently solved have been detected and the augmenting graph technique seems to be a fruitful tool to this aim. In this paper we apply a recent characterization of minimal augmenting graphs [22] to prove that MS can be solved for (P₆,K_2,3)-free graphs in polynomial time, extending some known results.
Keywords: graph algorithms, stable sets, P₆-free graphs
@article{DMGT_2012_32_3_a0,
     author = {Mosca, Raffaele},
     title = {Stable sets for $(P₆,K_{2,3})$-free graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {387--401},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a0/}
}
TY  - JOUR
AU  - Mosca, Raffaele
TI  - Stable sets for $(P₆,K_{2,3})$-free graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 387
EP  - 401
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a0/
LA  - en
ID  - DMGT_2012_32_3_a0
ER  - 
%0 Journal Article
%A Mosca, Raffaele
%T Stable sets for $(P₆,K_{2,3})$-free graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 387-401
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a0/
%G en
%F DMGT_2012_32_3_a0
Mosca, Raffaele. Stable sets for $(P₆,K_{2,3})$-free graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 3, pp. 387-401. http://geodesic.mathdoc.fr/item/DMGT_2012_32_3_a0/