Domination in functigraphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 299-319.

Voir la notice de l'article provenant de la source Library of Science

Let G₁ and G₂ be disjoint copies of a graph G, and let f:V(G₁) → V(G₂) be a function. Then a functigraph C(G,f) = (V,E) has the vertex set V = V(G₁) ∪ V(G₂) and the edge set E = E(G₁) ∪ E(G₂) ∪ uv | u ∈ V(G₁), v ∈ V(G₂),v = f(u). A functigraph is a generalization of a permutation graph (also known as a generalized prism) in the sense of Chartrand and Harary. In this paper, we study domination in functigraphs. Let γ(G) denote the domination number of G. It is readily seen that γ(G) ≤ γ(C(G,f)) ≤ 2 γ(G). We investigate for graphs generally, and for cycles in great detail, the functions which achieve the upper and lower bounds, as well as the realization of the intermediate values.
Keywords: domination, permutation graphs, generalized prisms, functigraphs
@article{DMGT_2012_32_2_a9,
     author = {Eroh, Linda and Gera, Ralucca and Kang, Cong and Larson, Craig and Yi, Eunjeong},
     title = {Domination in functigraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {299--319},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a9/}
}
TY  - JOUR
AU  - Eroh, Linda
AU  - Gera, Ralucca
AU  - Kang, Cong
AU  - Larson, Craig
AU  - Yi, Eunjeong
TI  - Domination in functigraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 299
EP  - 319
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a9/
LA  - en
ID  - DMGT_2012_32_2_a9
ER  - 
%0 Journal Article
%A Eroh, Linda
%A Gera, Ralucca
%A Kang, Cong
%A Larson, Craig
%A Yi, Eunjeong
%T Domination in functigraphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 299-319
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a9/
%G en
%F DMGT_2012_32_2_a9
Eroh, Linda; Gera, Ralucca; Kang, Cong; Larson, Craig; Yi, Eunjeong. Domination in functigraphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 299-319. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a9/

[1] S. Benecke, Domination of generalized Cartesian products, Ph.D. Dissertation (University of Victoria, 2009).

[2] S. Benecke and C.M. Mynhardt, Domination of generalized Cartesian products, Discrete Math. 310 (2010) 1392-1397, doi: 10.1016/j.disc.2009.12.007.

[3] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam,1973).

[4] C. Berge, Theory of Graphs and its Applications (Methuen, London, 1962).

[5] A.P. Burger and C.M. Mynhardt, Regular graphs are not universal fixers, Discrete Math. 310 (2010) 364-368, doi: 10.1016/j.disc.2008.09.016.

[6] A.P. Burger, C.M. Mynhardt and W.D. Weakley, On the domination number of prisms of graphs, Discuss. Math. Graph Theory 24 (2004) 303-318, doi: 10.7151/dmgt.1233.

[7] G. Chartrand and F. Harary, Planar permutation graphs, Ann. Inst. H. Poincare (Sect. B) 3 (1967) 433-438.

[8] G. Chartrand and P. Zhang, Introduction to Graph Theory (McGraw-Hill, Kalamazoo, MI, 2004).

[9] A. Chen, D. Ferrero, R. Gera and E. Yi, Functigraphs: An Extension of Permutation Graphs, Math. Bohem. 136 (2011) 27-37.

[10] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247-261, doi: 10.1002/net.3230070305.

[11] W. Dörfler, On mapping graphs and permutation graphs, Math. Slovaca 28 (1978) 277-288.

[12] B.L. Hartnell and D.F. Rall, On dominating the cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24 (2004) 389-402, doi: 10.7151/dmgt.1238.

[13] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).

[14] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[15] S.T. Hedetniemi, On classes of graphs defined by special cutsets of lines, Many Facets of Graph Theory, Lect. Notes Math. 110 (1969) 171-189, doi: 10.1007/BFb0060115.

[16] O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ., 38, Providence, 1962).