Domination in functigraphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 299-319
Voir la notice de l'article provenant de la source Library of Science
Let G₁ and G₂ be disjoint copies of a graph G, and let f:V(G₁) → V(G₂) be a function. Then a functigraph C(G,f) = (V,E) has the vertex set V = V(G₁) ∪ V(G₂) and the edge set E = E(G₁) ∪ E(G₂) ∪ uv | u ∈ V(G₁), v ∈ V(G₂),v = f(u). A functigraph is a generalization of a permutation graph (also known as a generalized prism) in the sense of Chartrand and Harary. In this paper, we study domination in functigraphs. Let γ(G) denote the domination number of G. It is readily seen that γ(G) ≤ γ(C(G,f)) ≤ 2 γ(G). We investigate for graphs generally, and for cycles in great detail, the functions which achieve the upper and lower bounds, as well as the realization of the intermediate values.
Keywords:
domination, permutation graphs, generalized prisms, functigraphs
@article{DMGT_2012_32_2_a9,
author = {Eroh, Linda and Gera, Ralucca and Kang, Cong and Larson, Craig and Yi, Eunjeong},
title = {Domination in functigraphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {299--319},
publisher = {mathdoc},
volume = {32},
number = {2},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a9/}
}
TY - JOUR AU - Eroh, Linda AU - Gera, Ralucca AU - Kang, Cong AU - Larson, Craig AU - Yi, Eunjeong TI - Domination in functigraphs JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 299 EP - 319 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a9/ LA - en ID - DMGT_2012_32_2_a9 ER -
Eroh, Linda; Gera, Ralucca; Kang, Cong; Larson, Craig; Yi, Eunjeong. Domination in functigraphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 299-319. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a9/