Edge maximal $C_{2k+1}$-edge disjoint free graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 271-278

Voir la notice de l'article provenant de la source Library of Science

For two positive integers r and s, (n;r,s) denotes to the class of graphs on n vertices containing no r of s-edge disjoint cycles and f(n;r,s) = max(G):G ∈ (n;r,s). In this paper, for integers r ≥ 2 and k ≥ 1, we determine f(n;r,2k+1) and characterize the edge maximal members in (n;r,2k+1).
Keywords: extremal graphs, edge disjoint, cycles
@article{DMGT_2012_32_2_a6,
     author = {Bataineh, M. and Jaradat, M.},
     title = {Edge maximal $C_{2k+1}$-edge disjoint free graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {271--278},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a6/}
}
TY  - JOUR
AU  - Bataineh, M.
AU  - Jaradat, M.
TI  - Edge maximal $C_{2k+1}$-edge disjoint free graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 271
EP  - 278
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a6/
LA  - en
ID  - DMGT_2012_32_2_a6
ER  - 
%0 Journal Article
%A Bataineh, M.
%A Jaradat, M.
%T Edge maximal $C_{2k+1}$-edge disjoint free graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 271-278
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a6/
%G en
%F DMGT_2012_32_2_a6
Bataineh, M.; Jaradat, M. Edge maximal $C_{2k+1}$-edge disjoint free graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 271-278. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a6/