Edge maximal $C_{2k+1}$-edge disjoint free graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 271-278.

Voir la notice de l'article provenant de la source Library of Science

For two positive integers r and s, (n;r,s) denotes to the class of graphs on n vertices containing no r of s-edge disjoint cycles and f(n;r,s) = max(G):G ∈ (n;r,s). In this paper, for integers r ≥ 2 and k ≥ 1, we determine f(n;r,2k+1) and characterize the edge maximal members in (n;r,2k+1).
Keywords: extremal graphs, edge disjoint, cycles
@article{DMGT_2012_32_2_a6,
     author = {Bataineh, M. and Jaradat, M.},
     title = {Edge maximal $C_{2k+1}$-edge disjoint free graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {271--278},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a6/}
}
TY  - JOUR
AU  - Bataineh, M.
AU  - Jaradat, M.
TI  - Edge maximal $C_{2k+1}$-edge disjoint free graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 271
EP  - 278
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a6/
LA  - en
ID  - DMGT_2012_32_2_a6
ER  - 
%0 Journal Article
%A Bataineh, M.
%A Jaradat, M.
%T Edge maximal $C_{2k+1}$-edge disjoint free graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 271-278
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a6/
%G en
%F DMGT_2012_32_2_a6
Bataineh, M.; Jaradat, M. Edge maximal $C_{2k+1}$-edge disjoint free graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 271-278. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a6/

[1] M.S. Bataineh, Some Extremal Problems in Graph Theory, Ph.D Thesis, Curtin University of Technology (Australia, 2007).

[2] M.S. Bataineh and M.M.M. Jaradat, Edge maximal C₃ and C₅-edge disjoint free graphs, International J. Math. Combin. 1 (2011) 82-87.

[3] J. Bondy, Large cycle in graphs, Discrete Math. 1 (1971) 121-132, doi: 10.1016/0012-365X(71)90019-7.

[4] J. Bondy, Pancyclic graphs, J. Combin. Theory (B) 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5.

[5] J. Bondy and U. Murty, Graph Theory with Applications (The MacMillan Press, London, 1976).

[6] S. Brandt, A sufficient condition for all short cycles, Discrete Appl. Math. 79 (1997) 63-66, doi: 10.1016/S0166-218X(97)00032-2.

[7] L. Caccetta, A problem in extremal graph theory, Ars Combin. 2 (1976) 33-56.

[8] L. Caccetta and R. Jia, Edge maximal non-bipartite Hamiltonian graphs without cycles of length 5, Technical Report.14/97. School of Mathematics and Statistics, Curtin University of Technology (Australia, 1997).

[9] L. Caccetta and R. Jia, Edge maximal non-bipartite graphs without odd cycles of prescribed length, Graphs and Combin. 18 (2002) 75-92, doi: 10.1007/s003730200004.

[10] Z. Füredi, On the number of edges of quadrilateral-free graphs, J. Combin. Theory (B) 68 (1996) 1-6, doi: 10.1006/jctb.1996.0052.

[11] R. Jia, Some Extremal Problems in Graph Theory, Ph.D Thesis, Curtin University of Technology (Australia, 1998).

[12] P. Turán, On a problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452.