Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_2_a5, author = {Chellali, Mustapha and Meddah, Nac\'era}, title = {Trees with equal 2-domination and 2-independence numbers}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {263--270}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a5/} }
TY - JOUR AU - Chellali, Mustapha AU - Meddah, Nacéra TI - Trees with equal 2-domination and 2-independence numbers JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 263 EP - 270 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a5/ LA - en ID - DMGT_2012_32_2_a5 ER -
Chellali, Mustapha; Meddah, Nacéra. Trees with equal 2-domination and 2-independence numbers. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 263-270. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a5/
[1] M. Borowiecki, On a minimaximal kernel of trees, Discuss. Math. 1 (1975) 3-6.
[2] M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, k-domination and k-independence in graphs: A Survey, Graphs and Combinatorics, 28 (2012) 1-55, doi: 10.1007/s00373-011-1040-3.
[3] O. Favaron, On a conjecture of Fink and Jacobson concerning k-domination and k-dependence, J. Combinat. Theory (B) 39 (1985) 101-102, doi: 10.1016/0095-8956(85)90040-1.
[4] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer Science., ed(s), Y. Alavi and A.J. Schwenk (Wiley, New York, 1985) 283-300.
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs ( Marcel Dekker, New York, 1998).
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York 1998).