Trees with equal 2-domination and 2-independence numbers
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 263-270.

Voir la notice de l'article provenant de la source Library of Science

Let G = (V,E) be a graph. A subset S of V is a 2-dominating set if every vertex of V-S is dominated at least 2 times, and S is a 2-independent set of G if every vertex of S has at most one neighbor in S. The minimum cardinality of a 2-dominating set a of G is the 2-domination number γ₂(G) and the maximum cardinality of a 2-independent set of G is the 2-independence number β₂(G). Fink and Jacobson proved that γ₂(G) ≤ β₂(G) for every graph G. In this paper we provide a constructive characterization of trees with equal 2-domination and 2-independence numbers.
Keywords: 2-domination number, 2-independence number, trees
@article{DMGT_2012_32_2_a5,
     author = {Chellali, Mustapha and Meddah, Nac\'era},
     title = {Trees with equal 2-domination and 2-independence numbers},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {263--270},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a5/}
}
TY  - JOUR
AU  - Chellali, Mustapha
AU  - Meddah, Nacéra
TI  - Trees with equal 2-domination and 2-independence numbers
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 263
EP  - 270
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a5/
LA  - en
ID  - DMGT_2012_32_2_a5
ER  - 
%0 Journal Article
%A Chellali, Mustapha
%A Meddah, Nacéra
%T Trees with equal 2-domination and 2-independence numbers
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 263-270
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a5/
%G en
%F DMGT_2012_32_2_a5
Chellali, Mustapha; Meddah, Nacéra. Trees with equal 2-domination and 2-independence numbers. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 263-270. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a5/

[1] M. Borowiecki, On a minimaximal kernel of trees, Discuss. Math. 1 (1975) 3-6.

[2] M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, k-domination and k-independence in graphs: A Survey, Graphs and Combinatorics, 28 (2012) 1-55, doi: 10.1007/s00373-011-1040-3.

[3] O. Favaron, On a conjecture of Fink and Jacobson concerning k-domination and k-dependence, J. Combinat. Theory (B) 39 (1985) 101-102, doi: 10.1016/0095-8956(85)90040-1.

[4] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer Science., ed(s), Y. Alavi and A.J. Schwenk (Wiley, New York, 1985) 283-300.

[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs ( Marcel Dekker, New York, 1998).

[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York 1998).