Trees with equal 2-domination and 2-independence numbers
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 263-270
Voir la notice de l'article provenant de la source Library of Science
Let G = (V,E) be a graph. A subset S of V is a 2-dominating set if every vertex of V-S is dominated at least 2 times, and S is a 2-independent set of G if every vertex of S has at most one neighbor in S. The minimum cardinality of a 2-dominating set a of G is the 2-domination number γ₂(G) and the maximum cardinality of a 2-independent set of G is the 2-independence number β₂(G). Fink and Jacobson proved that γ₂(G) ≤ β₂(G) for every graph G. In this paper we provide a constructive characterization of trees with equal 2-domination and 2-independence numbers.
Keywords:
2-domination number, 2-independence number, trees
@article{DMGT_2012_32_2_a5,
author = {Chellali, Mustapha and Meddah, Nac\'era},
title = {Trees with equal 2-domination and 2-independence numbers},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {263--270},
publisher = {mathdoc},
volume = {32},
number = {2},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a5/}
}
TY - JOUR AU - Chellali, Mustapha AU - Meddah, Nacéra TI - Trees with equal 2-domination and 2-independence numbers JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 263 EP - 270 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a5/ LA - en ID - DMGT_2012_32_2_a5 ER -
Chellali, Mustapha; Meddah, Nacéra. Trees with equal 2-domination and 2-independence numbers. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 263-270. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a5/