Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_2_a4, author = {Su, Li and Li, Hong-Hai and Zheng, Liu-Rong}, title = {The {Laplacian} spectrum of some digraphs obtained from the wheel}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {255--261}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a4/} }
TY - JOUR AU - Su, Li AU - Li, Hong-Hai AU - Zheng, Liu-Rong TI - The Laplacian spectrum of some digraphs obtained from the wheel JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 255 EP - 261 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a4/ LA - en ID - DMGT_2012_32_2_a4 ER -
Su, Li; Li, Hong-Hai; Zheng, Liu-Rong. The Laplacian spectrum of some digraphs obtained from the wheel. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 255-261. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a4/
[1] R. Agaev and P. Chebotarev, Which digraphs with rings structure are essentially cyclic?, Adv. in Appl. Math. 45 (2010) 232-251, doi: 10.1016/j.aam.2010.01.005.
[2] R. Agaev and P. Chebotarev, On the spectra of nonsymmetric Laplacian matrices, Linear Algebra Appl. 399 (2005) 157-168, doi: 10.1016/j.laa.2004.09.003.
[3] W.N. Anderson and T.D. Morley, Eigenvalues of the Laplacian of a graph, Linear Multilinear Algebra 18 (1985) 141-145, doi: 10.1080/03081088508817681.
[4] J.S. Caughman and J.J.P. Veerman, Kernels of directed graph Laplacians, Electron. J. Combin. 13 (2006) R39.
[5] P. Chebotarev and R. Agaev, Forest matrices around the Laplacian matrix, Linear Algebra Appl. 356 (2002) 253-274, doi: 10.1016/S0024-3795(02)00388-9.
[6] P. Chebotarev and R. Agaev, Coordination in multiagent systems and Laplacian spectra of digraphs, Autom. Remote Control 70 (2009) 469-483, doi: 10.1134/S0005117909030126.
[7] C. Godsil and G. Royle, Algebraic Graph Theory (Springer Verlag, 2001).
[8] A.K. Kelmans, The number of trees in a graph I, Autom. Remote Control 26 (1965) 2118-2129.
[9] R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197/198 (1994) 143-176, doi: 10.1016/0024-3795(94)90486-3.
[10] R. Olfati-Saber, J.A. Fax and R.M. Murray, Consensus and cooperation in networked multi-agent systems, Proc. IEEE 95 (2007) 215-233, doi: 10.1109/JPROC.2006.887293.