Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_2_a2, author = {Wang, Hong}, title = {Disjoint 5-cycles in a graph}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {221--242}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a2/} }
Wang, Hong. Disjoint 5-cycles in a graph. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 221-242. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a2/
[1] S. Abbasi, PhD Thesis (Rutgers University 1998).
[2] B. Bollobás, Extremal Graph Theory ( Academic Press, London, 1978).
[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423-439, doi: 10.1007/BF01895727.
[4] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984) 227-230, doi: 10.1016/0012-365X(84)90050-5.
[5] P. Erdös, Some recent combinatorial problems, Technical Report, University of Bielefeld, Nov. 1990.
[6] B. Randerath, I. Schiermeyer and H. Wang, On quadrilaterals in a graph, Discrete Math. 203 (1999) 229-237, doi: 10.1016/S0012-365X(99)00053-9.
[7] H. Wang, On quadrilaterals in a graph, Discrete Math. 288 (2004) 149-166, doi: 10.1016/j.disc.2004.02.020.
[8] H. Wang, Proof of the Erdös-Faudree conjecture on quadrilaterals, Graphs and Combin. 26 (2010) 833-877, doi: 10.1007/s00373-010-0948-3.