Disjoint 5-cycles in a graph
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 221-242.

Voir la notice de l'article provenant de la source Library of Science

We prove that if G is a graph of order 5k and the minimum degree of G is at least 3k then G contains k disjoint cycles of length 5.
Keywords: 5-cycles, pentagons, cycles, cycle coverings
@article{DMGT_2012_32_2_a2,
     author = {Wang, Hong},
     title = {Disjoint 5-cycles in a graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {221--242},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a2/}
}
TY  - JOUR
AU  - Wang, Hong
TI  - Disjoint 5-cycles in a graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 221
EP  - 242
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a2/
LA  - en
ID  - DMGT_2012_32_2_a2
ER  - 
%0 Journal Article
%A Wang, Hong
%T Disjoint 5-cycles in a graph
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 221-242
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a2/
%G en
%F DMGT_2012_32_2_a2
Wang, Hong. Disjoint 5-cycles in a graph. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 221-242. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a2/

[1] S. Abbasi, PhD Thesis (Rutgers University 1998).

[2] B. Bollobás, Extremal Graph Theory ( Academic Press, London, 1978).

[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423-439, doi: 10.1007/BF01895727.

[4] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984) 227-230, doi: 10.1016/0012-365X(84)90050-5.

[5] P. Erdös, Some recent combinatorial problems, Technical Report, University of Bielefeld, Nov. 1990.

[6] B. Randerath, I. Schiermeyer and H. Wang, On quadrilaterals in a graph, Discrete Math. 203 (1999) 229-237, doi: 10.1016/S0012-365X(99)00053-9.

[7] H. Wang, On quadrilaterals in a graph, Discrete Math. 288 (2004) 149-166, doi: 10.1016/j.disc.2004.02.020.

[8] H. Wang, Proof of the Erdös-Faudree conjecture on quadrilaterals, Graphs and Combin. 26 (2010) 833-877, doi: 10.1007/s00373-010-0948-3.