Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_2_a15, author = {Katona, Gyula and Kisv\"olcsey, \'Akos}, title = {Erd\"os-Ko-Rado from intersecting shadows}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {379--382}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a15/} }
Katona, Gyula; Kisvölcsey, Ákos. Erdös-Ko-Rado from intersecting shadows. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 379-382. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a15/
[1] P. Borg, A short proof of a cross-interscting theorem of Hilton, Discrete Math. 309 (2009) 4750-4753, doi: 10.1016/j.disc.2008.05.051.
[2] D.E. Daykin, Erdös-Ko-Rado from Kruskal-Katona, J. Combin. Theory (A) 17 (1974) 254-255, doi: 10.1016/0097-3165(74)90013-2.
[3] P. Erdös, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math., Oxford 12 (1961) 313-320.
[4] A.J.W. Hilton, An intersection theorem for a collection of families of subsets of a finite set, J. London Math. Soc. (2) 15 (1977) 369-376, doi: 10.1112/jlms/s2-15.3.369.
[5] G.O.H. Katona, Intersection theorems for systems of finite sets, Acta Math. Hungar. 15 (1964) 329-337, doi: 10.1007/BF01897141.
[6] G.O.H. Katona, A theorem of finite sets in: Theory of Graphs, Proc. Colloq. Tihany, 1966, P. Erdös and G.O.H. Katona (Eds.) (Akadémiai Kiadó, 1968) 187-207.
[7] J.B. Kruskal, The number of simplicies in a complex in: Math. Optimization Techniques, R. Bellman (Ed.) (Univ. of Calif. Press, Berkeley, 1963) 251-278.
[8] J. Wang and H.J. Zhang, Cross-intersecting families and primitivity of symmetric systems, J. Combin. Theory (A) 118 (2011) 455-462, doi: 10.1016/j.jcta.2010.09.005.
[9] H.J. Zhang, Primitivity and independent sets in direct products of vertex-transitive graphs, J. Graph Theory 67 (2011) 218-225, doi: 10.1002/jgt.20526.