Erdös-Ko-Rado from intersecting shadows
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 379-382.

Voir la notice de l'article provenant de la source Library of Science

A set system is called t-intersecting if every two members meet each other in at least t elements. Katona determined the minimum ratio of the shadow and the size of such families and showed that the Erdős-Ko-Rado theorem immediately follows from this result. The aim of this note is to reproduce the proof to obtain a slight improvement in the Kneser graph. We also give a brief overview of corresponding results.
Keywords: Kneser graph, coclique, intersecting family, shadow
@article{DMGT_2012_32_2_a15,
     author = {Katona, Gyula and Kisv\"olcsey, \'Akos},
     title = {Erd\"os-Ko-Rado from intersecting shadows},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {379--382},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a15/}
}
TY  - JOUR
AU  - Katona, Gyula
AU  - Kisvölcsey, Ákos
TI  - Erdös-Ko-Rado from intersecting shadows
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 379
EP  - 382
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a15/
LA  - en
ID  - DMGT_2012_32_2_a15
ER  - 
%0 Journal Article
%A Katona, Gyula
%A Kisvölcsey, Ákos
%T Erdös-Ko-Rado from intersecting shadows
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 379-382
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a15/
%G en
%F DMGT_2012_32_2_a15
Katona, Gyula; Kisvölcsey, Ákos. Erdös-Ko-Rado from intersecting shadows. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 379-382. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a15/

[1] P. Borg, A short proof of a cross-interscting theorem of Hilton, Discrete Math. 309 (2009) 4750-4753, doi: 10.1016/j.disc.2008.05.051.

[2] D.E. Daykin, Erdös-Ko-Rado from Kruskal-Katona, J. Combin. Theory (A) 17 (1974) 254-255, doi: 10.1016/0097-3165(74)90013-2.

[3] P. Erdös, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math., Oxford 12 (1961) 313-320.

[4] A.J.W. Hilton, An intersection theorem for a collection of families of subsets of a finite set, J. London Math. Soc. (2) 15 (1977) 369-376, doi: 10.1112/jlms/s2-15.3.369.

[5] G.O.H. Katona, Intersection theorems for systems of finite sets, Acta Math. Hungar. 15 (1964) 329-337, doi: 10.1007/BF01897141.

[6] G.O.H. Katona, A theorem of finite sets in: Theory of Graphs, Proc. Colloq. Tihany, 1966, P. Erdös and G.O.H. Katona (Eds.) (Akadémiai Kiadó, 1968) 187-207.

[7] J.B. Kruskal, The number of simplicies in a complex in: Math. Optimization Techniques, R. Bellman (Ed.) (Univ. of Calif. Press, Berkeley, 1963) 251-278.

[8] J. Wang and H.J. Zhang, Cross-intersecting families and primitivity of symmetric systems, J. Combin. Theory (A) 118 (2011) 455-462, doi: 10.1016/j.jcta.2010.09.005.

[9] H.J. Zhang, Primitivity and independent sets in direct products of vertex-transitive graphs, J. Graph Theory 67 (2011) 218-225, doi: 10.1002/jgt.20526.