Edge cycle extendable graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 373-378.

Voir la notice de l'article provenant de la source Library of Science

A graph is edge cycle extendable if every cycle C that is formed from edges and one chord of a larger cycle C⁺ is also formed from edges and one chord of a cycle C' of length one greater than C with V(C') ⊆ V(C⁺). Edge cycle extendable graphs are characterized by every block being either chordal (every nontriangular cycle has a chord) or chordless (no nontriangular cycle has a chord); equivalently, every chord of a cycle of length five or more has a noncrossing chord.
Keywords: cycle extendable graph, chordal graph, chordless graph, minimally 2-connected graph
@article{DMGT_2012_32_2_a14,
     author = {McKee, Terry},
     title = {Edge cycle extendable graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {373--378},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a14/}
}
TY  - JOUR
AU  - McKee, Terry
TI  - Edge cycle extendable graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 373
EP  - 378
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a14/
LA  - en
ID  - DMGT_2012_32_2_a14
ER  - 
%0 Journal Article
%A McKee, Terry
%T Edge cycle extendable graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 373-378
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a14/
%G en
%F DMGT_2012_32_2_a14
McKee, Terry. Edge cycle extendable graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 373-378. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a14/

[1] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey (Society for Industrial and Applied Mathematics, Philadelphia, 1999).

[2] G.A. Dirac, Minimally 2-connected graphs, J. Reine Angew. Math. 228 (1967) 204-216, doi: 10.1515/crll.1967.228.204.

[3] R.J. Faudree, R.J. Gould, M.S. Jacobson and L.M. Lesniak, Degree conditions and cycle extendability, Discrete Math. 141 (1995) 109-122, doi: 10.1016/0012-365X(93)E0193-8.

[4] B.Lévêque, F. Maffray and N. Trotignon, On graphs with no induced subdivision of K₄, submitted.

[5] T.A. McKee, Strongly pancyclic and dual-pancyclic graphs, Discuss. Math. Graph Theory 29 (2009) 5-14, doi: 10.7151/dmgt.1429.

[6] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory (Society for Industrial and Applied Mathematics, Philadelphia, 1999).

[7] M.D. Plummer, On minimal blocks, Trans. Amer. Math. Soc. 134 (1968) 85-94, doi: 10.1090/S0002-9947-1968-0228369-8.