Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_2_a14, author = {McKee, Terry}, title = {Edge cycle extendable graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {373--378}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a14/} }
McKee, Terry. Edge cycle extendable graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 373-378. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a14/
[1] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey (Society for Industrial and Applied Mathematics, Philadelphia, 1999).
[2] G.A. Dirac, Minimally 2-connected graphs, J. Reine Angew. Math. 228 (1967) 204-216, doi: 10.1515/crll.1967.228.204.
[3] R.J. Faudree, R.J. Gould, M.S. Jacobson and L.M. Lesniak, Degree conditions and cycle extendability, Discrete Math. 141 (1995) 109-122, doi: 10.1016/0012-365X(93)E0193-8.
[4] B.Lévêque, F. Maffray and N. Trotignon, On graphs with no induced subdivision of K₄, submitted.
[5] T.A. McKee, Strongly pancyclic and dual-pancyclic graphs, Discuss. Math. Graph Theory 29 (2009) 5-14, doi: 10.7151/dmgt.1429.
[6] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory (Society for Industrial and Applied Mathematics, Philadelphia, 1999).
[7] M.D. Plummer, On minimal blocks, Trans. Amer. Math. Soc. 134 (1968) 85-94, doi: 10.1090/S0002-9947-1968-0228369-8.