Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_2_a1, author = {Hern\'andez-Cruz, C\'esar}, title = {3-transitive digraphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {205--219}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a1/} }
Hernández-Cruz, César. 3-transitive digraphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 205-219. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a1/
[1] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications (Springer-Verlag Berlin Heidelberg New York, 2002).
[2] J. Bang-Jensen and J. Huang, Quasi-transitive digraphs, J. Graph Theory 20 (1995) 141-161, doi: 10.1002/jgt.3190200205.
[3] J. Bang-Jensen, J. Huang and E. Prisner, In-tournament digraphs, J. Combin. Theory (B) 59 (1993) 267-287, doi: 10.1006/jctb.1993.1069.
[4] C. Berge, Graphs (North-Holland, Amsterdam New York, 1985).
[5] E. Boros and V. Gurvich, Perfect graphs, kernels and cores of cooperative games, Discrete Math. 306 (2006) 2336-2354, doi: 10.1016/j.disc.2005.12.031.
[6] V. Chvátal, On the computational complexity of finding a kernel, Report No. CRM-300, 1973, Centre de recherches mathématiques, Université de Montréal.
[7] R. Diestel, Graph Theory 3rd Edition (Springer-Verlag Berlin Heidelberg New York, 2005).
[8] H. Galeana-Sánchez and I.A. Goldfeder, A classification of arc-locally semicomplete digraphs, Publicaciones Preliminares del Instituto de Matemáticas, UNAM 859 (2010).
[9] H. Galeana-Sánchez, I.A. Goldfeder and I. Urrutia, On the structure of 3-quasi-transitive digraphs, Discrete Math. 310 (2010) 2495-2498, doi: 10.1016/j.disc.2010.06.008.
[10] H. Galeana-Sánchez and C. Hernández-Cruz, k-kernels in k-transitive and k-quasi-transitive digraphs, Submitted (2010).
[11] A. Ghouila-Houri, Caractérization des graphes non orientés dont on peut orienter les arrêtes de manière à obtenir le graphe d'une relation d'rdre, Comptes Rendus de l'Académie des Sciences Paris 254 (1962) 1370-1371.
[12] J. Von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1953).
[13] S. Wang and R. Wang, The structure of arc-locally in-semicomplete digraphs, Discrete Math. 309 (2009) 6555-6562, doi: 10.1016/j.disc.2009.06.033.
[14] S. Wang and R. Wang, Independent sets and non-augmentable paths in arc-locally in-semicomplete digraphs and quasi-arc-transitive digraphs, Discrete Math. 311 (2010) 282-288, doi: 10.1016/j.disc.2010.11.009.