3-transitive digraphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 205-219.

Voir la notice de l'article provenant de la source Library of Science

Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively. A digraph D is 3-transitive if the existence of the directed path (u,v,w,x) of length 3 in D implies the existence of the arc (u,x) ∈ A(D). In this article strong 3-transitive digraphs are characterized and the structure of non-strong 3-transitive digraphs is described. The results are used, e.g., to characterize 3-transitive digraphs that are transitive and to characterize 3-transitive digraphs with a kernel.
Keywords: digraph, kernel, transitive digraph, quasi-transitive digraph, 3-transitive digraph, 3-quasi-transitive digraph
@article{DMGT_2012_32_2_a1,
     author = {Hern\'andez-Cruz, C\'esar},
     title = {3-transitive digraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {205--219},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a1/}
}
TY  - JOUR
AU  - Hernández-Cruz, César
TI  - 3-transitive digraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 205
EP  - 219
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a1/
LA  - en
ID  - DMGT_2012_32_2_a1
ER  - 
%0 Journal Article
%A Hernández-Cruz, César
%T 3-transitive digraphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 205-219
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a1/
%G en
%F DMGT_2012_32_2_a1
Hernández-Cruz, César. 3-transitive digraphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 205-219. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a1/

[1] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications (Springer-Verlag Berlin Heidelberg New York, 2002).

[2] J. Bang-Jensen and J. Huang, Quasi-transitive digraphs, J. Graph Theory 20 (1995) 141-161, doi: 10.1002/jgt.3190200205.

[3] J. Bang-Jensen, J. Huang and E. Prisner, In-tournament digraphs, J. Combin. Theory (B) 59 (1993) 267-287, doi: 10.1006/jctb.1993.1069.

[4] C. Berge, Graphs (North-Holland, Amsterdam New York, 1985).

[5] E. Boros and V. Gurvich, Perfect graphs, kernels and cores of cooperative games, Discrete Math. 306 (2006) 2336-2354, doi: 10.1016/j.disc.2005.12.031.

[6] V. Chvátal, On the computational complexity of finding a kernel, Report No. CRM-300, 1973, Centre de recherches mathématiques, Université de Montréal.

[7] R. Diestel, Graph Theory 3rd Edition (Springer-Verlag Berlin Heidelberg New York, 2005).

[8] H. Galeana-Sánchez and I.A. Goldfeder, A classification of arc-locally semicomplete digraphs, Publicaciones Preliminares del Instituto de Matemáticas, UNAM 859 (2010).

[9] H. Galeana-Sánchez, I.A. Goldfeder and I. Urrutia, On the structure of 3-quasi-transitive digraphs, Discrete Math. 310 (2010) 2495-2498, doi: 10.1016/j.disc.2010.06.008.

[10] H. Galeana-Sánchez and C. Hernández-Cruz, k-kernels in k-transitive and k-quasi-transitive digraphs, Submitted (2010).

[11] A. Ghouila-Houri, Caractérization des graphes non orientés dont on peut orienter les arrêtes de manière à obtenir le graphe d'une relation d'rdre, Comptes Rendus de l'Académie des Sciences Paris 254 (1962) 1370-1371.

[12] J. Von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1953).

[13] S. Wang and R. Wang, The structure of arc-locally in-semicomplete digraphs, Discrete Math. 309 (2009) 6555-6562, doi: 10.1016/j.disc.2009.06.033.

[14] S. Wang and R. Wang, Independent sets and non-augmentable paths in arc-locally in-semicomplete digraphs and quasi-arc-transitive digraphs, Discrete Math. 311 (2010) 282-288, doi: 10.1016/j.disc.2010.11.009.