Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_2_a0, author = {Santhakumaran, A. and Titus, P.}, title = {The vertex monophonic number of a graph}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {191--204}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a0/} }
Santhakumaran, A.; Titus, P. The vertex monophonic number of a graph. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 2, pp. 191-204. http://geodesic.mathdoc.fr/item/DMGT_2012_32_2_a0/
[1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990).
[2] F. Buckley, F. Harary and L.U. Quintas, Extremal results on the geodetic number of a graph, Scientia A2 (1988) 17-26.
[3] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002) 1-6, doi: 10.1002/net.10007.
[4] G. Chartrand, G.L. Johns and P. Zhang, The detour number of a graph, Utilitas Mathematica 64 (2003) 97-113.
[5] G. Chartrand, G.L. Johns and P. Zhang, On the detour number and geodetic number of a graph, Ars Combinatoria 72 (2004) 3-15.
[6] F. Harary, Graph Theory (Addison-Wesley, 1969).
[7] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modeling 17(11) (1993) 87-95, doi: 10.1016/0895-7177(93)90259-2.
[8] A.P. Santhakumaran and P. Titus, Vertex geodomination in graphs, Bulletin of Kerala Mathematics Association, 2(2) (2005) 45-57.
[9] A.P. Santhakumaran and P. Titus, On the vertex geodomination number of a graph, Ars Combinatoria, to appear.
[10] A.P. Santhakumaran, P. Titus, The vertex detour number of a graph, AKCE International J. Graphs. Combin. 4(1) (2007) 99-112.
[11] A.P. Santhakumaran and P. Titus, Monophonic distance in graphs, Discrete Mathematics, Algorithms and Applications, to appear.