Recognizable colorings of cycles and trees
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 81-90

Voir la notice de l'article provenant de la source Library of Science

For a graph G and a vertex-coloring c:V(G) → 1,2, ...,k, the color code of a vertex v is the (k+1)-tuple (a₀,a₁, ...,aₖ), where a₀ = c(v), and for 1 ≤ i ≤ k, a_i is the number of neighbors of v colored i. A recognizable coloring is a coloring such that distinct vertices have distinct color codes. The recognition number of a graph is the minimum k for which G has a recognizable k-coloring. In this paper we prove three conjectures of Chartrand et al. in [8] regarding the recognition number of cycles and trees.
Keywords: recognizable coloring, recognition number
@article{DMGT_2012_32_1_a6,
     author = {Dorfling, Michael and Dorfling, Samantha},
     title = {Recognizable colorings of cycles and trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {81--90},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a6/}
}
TY  - JOUR
AU  - Dorfling, Michael
AU  - Dorfling, Samantha
TI  - Recognizable colorings of cycles and trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 81
EP  - 90
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a6/
LA  - en
ID  - DMGT_2012_32_1_a6
ER  - 
%0 Journal Article
%A Dorfling, Michael
%A Dorfling, Samantha
%T Recognizable colorings of cycles and trees
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 81-90
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a6/
%G en
%F DMGT_2012_32_1_a6
Dorfling, Michael; Dorfling, Samantha. Recognizable colorings of cycles and trees. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 81-90. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a6/