Recognizable colorings of cycles and trees
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 81-90.

Voir la notice de l'article provenant de la source Library of Science

For a graph G and a vertex-coloring c:V(G) → 1,2, ...,k, the color code of a vertex v is the (k+1)-tuple (a₀,a₁, ...,aₖ), where a₀ = c(v), and for 1 ≤ i ≤ k, a_i is the number of neighbors of v colored i. A recognizable coloring is a coloring such that distinct vertices have distinct color codes. The recognition number of a graph is the minimum k for which G has a recognizable k-coloring. In this paper we prove three conjectures of Chartrand et al. in [8] regarding the recognition number of cycles and trees.
Keywords: recognizable coloring, recognition number
@article{DMGT_2012_32_1_a6,
     author = {Dorfling, Michael and Dorfling, Samantha},
     title = {Recognizable colorings of cycles and trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {81--90},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a6/}
}
TY  - JOUR
AU  - Dorfling, Michael
AU  - Dorfling, Samantha
TI  - Recognizable colorings of cycles and trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 81
EP  - 90
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a6/
LA  - en
ID  - DMGT_2012_32_1_a6
ER  - 
%0 Journal Article
%A Dorfling, Michael
%A Dorfling, Samantha
%T Recognizable colorings of cycles and trees
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 81-90
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a6/
%G en
%F DMGT_2012_32_1_a6
Dorfling, Michael; Dorfling, Samantha. Recognizable colorings of cycles and trees. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 81-90. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a6/

[1] M. Aigner and E. Triesch, Irregular assignments and two problems á la Ringel, in: Topics in Combinatorics and Graph Theory, R. Bodendiek and R. Henn, eds. (Physica, Heidelberg, 1990) 29-36.

[2] M. Aigner, E. Triesch and Z. Tuza, Irregular assignments and vertex-distinguishing edge-colorings of graphs, Combinatorics' 90 (Elsevier Science Pub., New York, 1992) 1-9.

[3] A.C. Burris, On graphs with irregular coloring number 2, Congr. Numer. 100 (1994) 129-140.

[4] A.C. Burris, The irregular coloring number of a tree, Discrete Math. 141 (1995) 279-283, doi: 10.1016/0012-365X(93)E0225-S.

[5] G. Chartrand, H. Escuadro, F. Okamoto and P. Zhang, Detectable colorings of graphs, Util. Math. 69 (2006) 13-32.

[6] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congress. Numer. 64 (1988) 197-210.

[7] G. Chartrand and L. Lesniak, Graphs Digraphs: Fourth Edition (Chapman Hall/CRC, Boca Raton, FL, 2005).

[8] G. Chartrand, L. Lesniak, D.W. VanderJagt and P. Zhang, Recognizable colorings of graphs, Discuss. Math. Graph Theory 28 (2008) 35-57, doi: 10.7151/dmgt.1390.

[9] F. Harary and M. Plantholt, The point-distinguishing chromatic index, in: Graphs and Applications (Wiley, New York, 1985) 147-162.