Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_1_a6, author = {Dorfling, Michael and Dorfling, Samantha}, title = {Recognizable colorings of cycles and trees}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {81--90}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a6/} }
Dorfling, Michael; Dorfling, Samantha. Recognizable colorings of cycles and trees. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 81-90. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a6/
[1] M. Aigner and E. Triesch, Irregular assignments and two problems á la Ringel, in: Topics in Combinatorics and Graph Theory, R. Bodendiek and R. Henn, eds. (Physica, Heidelberg, 1990) 29-36.
[2] M. Aigner, E. Triesch and Z. Tuza, Irregular assignments and vertex-distinguishing edge-colorings of graphs, Combinatorics' 90 (Elsevier Science Pub., New York, 1992) 1-9.
[3] A.C. Burris, On graphs with irregular coloring number 2, Congr. Numer. 100 (1994) 129-140.
[4] A.C. Burris, The irregular coloring number of a tree, Discrete Math. 141 (1995) 279-283, doi: 10.1016/0012-365X(93)E0225-S.
[5] G. Chartrand, H. Escuadro, F. Okamoto and P. Zhang, Detectable colorings of graphs, Util. Math. 69 (2006) 13-32.
[6] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congress. Numer. 64 (1988) 197-210.
[7] G. Chartrand and L. Lesniak, Graphs Digraphs: Fourth Edition (Chapman Hall/CRC, Boca Raton, FL, 2005).
[8] G. Chartrand, L. Lesniak, D.W. VanderJagt and P. Zhang, Recognizable colorings of graphs, Discuss. Math. Graph Theory 28 (2008) 35-57, doi: 10.7151/dmgt.1390.
[9] F. Harary and M. Plantholt, The point-distinguishing chromatic index, in: Graphs and Applications (Wiley, New York, 1985) 147-162.