Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_1_a5, author = {Fujie-Okamoto, Futaba and Kolasinski, Kyle and Lin, Jianwei and Zhang, Ping}, title = {Vertex rainbow colorings of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {63--80}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a5/} }
TY - JOUR AU - Fujie-Okamoto, Futaba AU - Kolasinski, Kyle AU - Lin, Jianwei AU - Zhang, Ping TI - Vertex rainbow colorings of graphs JO - Discussiones Mathematicae. Graph Theory PY - 2012 SP - 63 EP - 80 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a5/ LA - en ID - DMGT_2012_32_1_a5 ER -
Fujie-Okamoto, Futaba; Kolasinski, Kyle; Lin, Jianwei; Zhang, Ping. Vertex rainbow colorings of graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 63-80. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a5/
[1] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[2] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, The rainbow connectivity of a graph, Networks 54 (2009) 75-81, doi: 10.1002/net.20296.
[3] G. Chartrand, F. Okamoto and P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (2010) 360-367.
[4] G. Chartrand and P. Zhang, Chromatic Graph Theory (Chapman Hall/CRC Press, 2009).
[5] M. Krivelevich and R. Yuster,The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185-191
[6] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150-168, doi: 10.2307/2371086.