List coloring of complete multipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 31-37.

Voir la notice de l'article provenant de la source Library of Science

The choice number of a graph G is the smallest integer k such that for every assignment of a list L(v) of k colors to each vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from L(v). We present upper and lower bounds on the choice number of complete multipartite graphs with partite classes of equal sizes and complete r-partite graphs with r-1 partite classes of order two.
Keywords: list coloring, choice number, complete multipartite graph
@article{DMGT_2012_32_1_a2,
     author = {Vetr{\'\i}k, Tom\'a\v{s}},
     title = {List coloring of complete multipartite graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {31--37},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a2/}
}
TY  - JOUR
AU  - Vetrík, Tomáš
TI  - List coloring of complete multipartite graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 31
EP  - 37
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a2/
LA  - en
ID  - DMGT_2012_32_1_a2
ER  - 
%0 Journal Article
%A Vetrík, Tomáš
%T List coloring of complete multipartite graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 31-37
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a2/
%G en
%F DMGT_2012_32_1_a2
Vetrík, Tomáš. List coloring of complete multipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 31-37. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a2/

[1] N. Alon, Choice numbers of graphs; a probabilistic approach, Combinatorics, Probability and Computing 1 (1992) 107-114, doi: 10.1017/S0963548300000122.

[2] H. Enomoto, K. Ohba, K. Ota and J. Sakamoto, Choice number of some complete multi-partite graphs, Discrete Math. 244 (2002) 55-66, doi: 10.1016/S0012-365X(01)00059-0.

[3] P. Erdös, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proceedings of the West-Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, California (Congr. Numer. XXVI, 1979) 125-157.

[4] S. Gravier and F. Maffray, Graphs whose choice number is equal to their chromatic number, J. Graph Theory 27 (1998) 87-97, doi: 10.1002/(SICI)1097-0118(199802)27:287::AID-JGT4>3.0.CO;2-B

[5] H.A. Kierstead, On the choosability of complete multipartite graphs with part size three, Discrete Math. 211 (2000) 255-259, doi: 10.1016/S0012-365X(99)00157-0.

[6] Zs. Tuza, Graph colorings with local constraints -- a survey, Discuss. Math. Graph Theory 17 (1997) 161-228, doi: 10.7151/dmgt.1049.

[7] V.G. Vizing, Coloring the vertices of a graph in prescribed colors, Diskret. Analiz 29 (1976) 3-10 (in Russian).

[8] D.R. Woodall, List colourings of graphs, in: Surveys in Combinatorics, London Mathematical Society Lecture Note Series 288 (Cambridge University Press, 2001) 269-301.

[9] D. Yang, Extension of the game coloring number and some results on the choosability of complete multipartite graphs, PhD Thesis, (Arizona State University 2003).