List coloring of complete multipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 31-37

Voir la notice de l'article provenant de la source Library of Science

The choice number of a graph G is the smallest integer k such that for every assignment of a list L(v) of k colors to each vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from L(v). We present upper and lower bounds on the choice number of complete multipartite graphs with partite classes of equal sizes and complete r-partite graphs with r-1 partite classes of order two.
Keywords: list coloring, choice number, complete multipartite graph
@article{DMGT_2012_32_1_a2,
     author = {Vetr{\'\i}k, Tom\'a\v{s}},
     title = {List coloring of complete multipartite graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {31--37},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a2/}
}
TY  - JOUR
AU  - Vetrík, Tomáš
TI  - List coloring of complete multipartite graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 31
EP  - 37
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a2/
LA  - en
ID  - DMGT_2012_32_1_a2
ER  - 
%0 Journal Article
%A Vetrík, Tomáš
%T List coloring of complete multipartite graphs
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 31-37
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a2/
%G en
%F DMGT_2012_32_1_a2
Vetrík, Tomáš. List coloring of complete multipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 31-37. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a2/