List coloring of complete multipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 31-37
Voir la notice de l'article provenant de la source Library of Science
The choice number of a graph G is the smallest integer k such that for every assignment of a list L(v) of k colors to each vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from L(v). We present upper and lower bounds on the choice number of complete multipartite graphs with partite classes of equal sizes and complete r-partite graphs with r-1 partite classes of order two.
Keywords:
list coloring, choice number, complete multipartite graph
@article{DMGT_2012_32_1_a2,
author = {Vetr{\'\i}k, Tom\'a\v{s}},
title = {List coloring of complete multipartite graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {31--37},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a2/}
}
Vetrík, Tomáš. List coloring of complete multipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 31-37. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a2/