Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_1_a12, author = {Hailat, Mohammad}, title = {On a generalization of the friendship theorem}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {153--160}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a12/} }
Hailat, Mohammad. On a generalization of the friendship theorem. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 153-160. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a12/
[1] J. Bondy, Kotzig's Conjecture on generalized friendship graphs - a survey, Annals of Discrete Mathematics 27 (1985) 351-366.
[2] P. Erdös, A. Rènyi and V. Sós, On a problem of graph theory, Studia Sci. Math 1 (1966) 215-235.
[3] R. Gera and J. Shen, Extensions of strongly regular graphs, Electronic J. Combin. 15 (2008) # N3 1-5.
[4] J. Hammersley, The friendship theorem and the love problem, in: Surveys in Combinatorics, London Math. Soc., Lecture Notes 82 (Cambridge University Press, Cambridge, 1989) 127-140.
[5] N. Limaye, D. Sarvate, P. Stanika and P. Young, Regular and strongly regular planar graphs, J. Combin. Math. Combin. Compt 54 (2005) 111-127.
[6] J. Longyear and T. Parsons, The friendship theorem, Indag. Math. 34 (1972) 257-262.
[7] E. van Dam and W. Haemers, Graphs with constant μ and μ̅, Discrete Math. 182 (1998) 293-307, doi: 10.1016/S0012-365X(97)00150-7.
[8] H. Wilf, The friendship theorem in combinatorial mathematics and its applications, Proc. Conf. Oxford, 1969 (Academic Press: London and New York, 1971) 307-309.