The k-rainbow domatic number of a graph
Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 129-140.

Voir la notice de l'article provenant de la source Library of Science

For a positive integer k, a k-rainbow dominating function of a graph G is a function f from the vertex set V(G) to the set of all subsets of the set 1,2, ...,k such that for any vertex v ∈ V(G) with f(v) = ∅ the condition ⋃_u ∈ N(v)f(u) = 1,2, ...,k is fulfilled, where N(v) is the neighborhood of v. The 1-rainbow domination is the same as the ordinary domination. A set f₁,f₂, ...,f_d of k-rainbow dominating functions on G with the property that ∑_i = 1^d |f_i(v)| ≤ k for each v ∈ V(G), is called a k-rainbow dominating family (of functions) on G. The maximum number of functions in a k-rainbow dominating family on G is the k-rainbow domatic number of G, denoted by d_rk(G). Note that d_r1(G) is the classical domatic number d(G). In this paper we initiate the study of the k-rainbow domatic number in graphs and we present some bounds for d_rk(G). Many of the known bounds of d(G) are immediate consequences of our results.
Keywords: k-rainbow dominating function, k-rainbow domination number, k-rainbow domatic number
@article{DMGT_2012_32_1_a10,
     author = {Sheikholeslami, Seyyed and Volkmann, Lutz},
     title = {The k-rainbow domatic number of a graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {129--140},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a10/}
}
TY  - JOUR
AU  - Sheikholeslami, Seyyed
AU  - Volkmann, Lutz
TI  - The k-rainbow domatic number of a graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2012
SP  - 129
EP  - 140
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a10/
LA  - en
ID  - DMGT_2012_32_1_a10
ER  - 
%0 Journal Article
%A Sheikholeslami, Seyyed
%A Volkmann, Lutz
%T The k-rainbow domatic number of a graph
%J Discussiones Mathematicae. Graph Theory
%D 2012
%P 129-140
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a10/
%G en
%F DMGT_2012_32_1_a10
Sheikholeslami, Seyyed; Volkmann, Lutz. The k-rainbow domatic number of a graph. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 129-140. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a10/

[1] C. Berge, Theory of Graphs and its Applications (Methuen, London, 1962).

[2] B. Brešar, M.A. Henning and D.F. Rall, Rainbow domination in graphs, Taiwanese J. Math. 12 (2008) 213-225.

[3] B. Brešar and T.K. Šumenjak, On the 2-rainbow domination in graphs, Discrete Appl. Math. 155 (2007) 2394-2400, doi: 10.1016/j.dam.2007.07.018.

[4] G.J. Chang, J. Wu and X. Zhu, Rainbow domination on trees, Discrete Appl. Math. 158 (2010) 8-12, doi: 10.1016/j.dam.2009.08.010.

[5] T. Chunling, L. Xiaohui, Y. Yuansheng and L. Meiqin, 2-rainbow domination of generalized Petersen graphs P(n,2), Discrete Appl. Math 157 (2009) 1932-1937, doi: 10.1016/j.dam.2009.01.020.

[6] E.J. Cockayne, P.J.P. Grobler, W.R. Gründlingh, J. Munganga and J.H. van Vuuren, Protection of a graph, Util. Math. 67 (2005) 19-32.

[7] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247-261, doi: 10.1002/net.3230070305.

[8] B. Hartnell and D.F. Rall, On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24 (2004) 389-402, doi: 10.7151/dmgt.1238.

[9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).

[10] H.B. Walikar, B.D. Acharya and E. Sampathkumar, Recent Developments in the Theory of Domination in Graphs (in: MRI Lecture Notes in Math., Mahta Research Instit., Allahabad, 1979).

[11] D. B. West, Introduction to Graph Theory (Prentice-Hall, Inc, 2000).

[12] G. Xu, 2-rainbow domination of generalized Petersen graphs P(n,3), Discrete Appl. Math. 157 (2009) 2570-2573, doi: 10.1016/j.dam.2009.03.016.