Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2012_32_1_a1, author = {Santhakumaran, A.}, title = {Median of a graph with respect to edges}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {19--29}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a1/} }
Santhakumaran, A. Median of a graph with respect to edges. Discussiones Mathematicae. Graph Theory, Tome 32 (2012) no. 1, pp. 19-29. http://geodesic.mathdoc.fr/item/DMGT_2012_32_1_a1/
[1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Reading MA, 1990).
[2] F. Buckley, Z. Miller and P.J. Slater, On graphs containing a given graph as center, J. Graph Theory 5 (1981) 427-434, doi: 10.1002/jgt.3190050413.
[3] G. Chartrand and P. Zhang, Introduction to Graph Theory (Tata McGraw-Hill, New Delhi, 2006).
[4] L.C. Freeman, Centrality in Social networks; 1. Conceptual clarification, Social Networks 1 (1978/79) 215-239, doi: 10.1016/0378-8733(78)90021-7.
[5] C. Jordan, Sur les assemblages des lignas, J. Reine Angew. Math. 70 (1869) 185-190, doi: 10.1515/crll.1869.70.185.
[6] A.P. Santhakumaran, Center of a graph with respect to edges, SCIENTIA, Series A: Mathematical Sciences 19 (2010) 13-23.
[7] P.J. Slater, Some definitions of central structures, preprint.
[8] P.J. Slater, Centrality of paths and vertices in a graph : Cores and Pits, Theory and Applications of Graphs, ed, Gary Chartrand, (John Wiley, 1981) 529-542.
[9] B. Zelinka, Medians and Peripherians of trees, Arch. Math., Brno (1968) 87-95.