Roman bondage in graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 763-773.

Voir la notice de l'article provenant de la source Library of Science

A Roman dominating function on a graph G is a function f:V(G) → 0,1,2 satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V(G)) = ∑_u ∈ V(G)f(u). The Roman domination number, γ_R(G), of G is the minimum weight of a Roman dominating function on G. In this paper, we define the Roman bondage b_R(G) of a graph G with maximum degree at least two to be the minimum cardinality of all sets E' ⊆ E(G) for which γ_R(G -E') > γ_R(G). We determine the Roman bondage number in several classes of graphs and give some sharp bounds.
Keywords: domination, Roman domination, Roman bondage number
@article{DMGT_2011_31_4_a9,
     author = {Rad, Nader and Volkmann, Lutz},
     title = {Roman bondage in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {763--773},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a9/}
}
TY  - JOUR
AU  - Rad, Nader
AU  - Volkmann, Lutz
TI  - Roman bondage in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 763
EP  - 773
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a9/
LA  - en
ID  - DMGT_2011_31_4_a9
ER  - 
%0 Journal Article
%A Rad, Nader
%A Volkmann, Lutz
%T Roman bondage in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 763-773
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a9/
%G en
%F DMGT_2011_31_4_a9
Rad, Nader; Volkmann, Lutz. Roman bondage in graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 763-773. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a9/

[1] D. Bauer, F. Harary, J. Nieminen and C.L. Suffel, Domination alteration sets in graphs, Discrete Math. 47 (1983) 153-161, doi: 10.1016/0012-365X(83)90085-7.

[2] E.J. Cockayne, P.M. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11-22, doi: 10.1016/j.disc.2003.06.004.

[3] J.E. Dunbar, T.W. Haynes, U. Teschner and L. Volkmann, Bondage, insensitivity, and reinforcement, in: T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998) 471-489.

[4] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, The bondage number of a graph, Discrete Math. 86 (1990) 47-57, doi: 10.1016/0012-365X(90)90348-L.

[5] B.L. Hartnell and D.F. Rall, Bounds on the bondage number of a graph, Discrete Math. 128 (1994) 173-177, doi: 10.1016/0012-365X(94)90111-2.

[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[7] C.S. ReVelle and K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer Math. Monthly 107 (2000) 585-594, doi: 10.2307/2589113.

[8] I. Stewart, Defend the Roman Empire!, Sci. Amer. 281 (1999) 136-139, doi: 10.1038/scientificamerican1299-136.

[9] U. Teschner, New results about the bondage number of a graph, Discrete Math. 171 (1997) 249-259, doi: 10.1016/S0012-365X(96)00007-6.

[10] D.B. West, Introduction to Graph Theory, (2nd edition) (Prentice Hall, USA, 2001).