Roman bondage in graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 763-773
Voir la notice de l'article provenant de la source Library of Science
A Roman dominating function on a graph G is a function f:V(G) → 0,1,2 satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V(G)) = ∑_u ∈ V(G)f(u). The Roman domination number, γ_R(G), of G is the minimum weight of a Roman dominating function on G. In this paper, we define the Roman bondage b_R(G) of a graph G with maximum degree at least two to be the minimum cardinality of all sets E' ⊆ E(G) for which γ_R(G -E') > γ_R(G). We determine the Roman bondage number in several classes of graphs and give some sharp bounds.
Keywords:
domination, Roman domination, Roman bondage number
@article{DMGT_2011_31_4_a9,
author = {Rad, Nader and Volkmann, Lutz},
title = {Roman bondage in graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {763--773},
publisher = {mathdoc},
volume = {31},
number = {4},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a9/}
}
Rad, Nader; Volkmann, Lutz. Roman bondage in graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 763-773. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a9/