Spanning tree congestion of rook's graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 753-761.

Voir la notice de l'article provenant de la source Library of Science

Let G be a connected graph and T be a spanning tree of G. For e ∈ E(T), the congestion of e is the number of edges in G joining the two components of T - e. The congestion of T is the maximum congestion over all edges in T. The spanning tree congestion of G is the minimum congestion over all its spanning trees. In this paper, we determine the spanning tree congestion of the rook's graph Kₘ ☐ Kₙ for any m and n.
Keywords: spanning tree congestion, Rook's graph
@article{DMGT_2011_31_4_a8,
     author = {Kozawa, Kyohei and Otachi, Yota},
     title = {Spanning tree congestion of rook's graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {753--761},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a8/}
}
TY  - JOUR
AU  - Kozawa, Kyohei
AU  - Otachi, Yota
TI  - Spanning tree congestion of rook's graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 753
EP  - 761
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a8/
LA  - en
ID  - DMGT_2011_31_4_a8
ER  - 
%0 Journal Article
%A Kozawa, Kyohei
%A Otachi, Yota
%T Spanning tree congestion of rook's graphs
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 753-761
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a8/
%G en
%F DMGT_2011_31_4_a8
Kozawa, Kyohei; Otachi, Yota. Spanning tree congestion of rook's graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 753-761. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a8/

[1] J. Balogh and D. Mubayi and A. Pluhár, On the edge-bandwidth of graph products, Theoret. Comput. Sci. 359 (2006) 43-57, doi: 10.1016/j.tcs.2006.01.046.

[2] A. Bekmetjev and G. Hurlbert, The pebbling threshold of the square of cliques, Discrete Math. 308 (2008) 4306-4314, doi: 10.1016/j.disc.2007.08.012.

[3] S.L. Bezrukov, Edge isoperimetric problems on graphs, in: L. Lovasz, A. Gyarfas, G.O.H. Katona, A. Recski and L. Szekely, eds, Graph Theory and Combinatorial Biology, 7 Bolyai Soc. Math. Stud. 157-197 Janos Bolyai Math. Soc. (Budapest, 1999).

[4] H.L. Bodlaender, K. Kozawa, T. Matsushima and Y. Otachi, Spanning Tree Congestion of k-outerplanar Graphs, in: WAAC 2010 (2010) 34-39.

[5] A. Castejón and M.I. Ostrovskii, Minimum congestion spanning trees of grids and discrete toruses, Discuss. Math. Graph Theory 29 (2009) 511-519, doi: 10.7151/dmgt.1461.

[6] M. Chudnovsky and N. Robertson and P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. of Math. 164 (2006) 51-229, doi: 10.4007/annals.2006.164.51.

[7] A.J. Hoffman, On the Line Graph of the Complete Bipartite Graph, Ann. Math. Statist. 35 (1964) 883-885, doi: 10.1214/aoms/1177703593.

[8] S.W. Hruska, On tree congestion of graphs, Discrete Math. 308 (2008) 1801-1809, doi: 10.1016/j.disc.2007.04.030.

[9] K. Kozawa and Y. Otachi and K. Yamazaki, On spanning tree congestion of graphs, Discrete Math. 309 (2009) 4215-4224, doi: 10.1016/j.disc.2008.12.021.

[10] C. Löwenstein and D. Rautenbach and F. Regen, On spanning tree congestion, Discrete Math. 309 (2009) 4653-4655, doi: 10.1016/j.disc.2009.01.012.

[11] R. Laskar and C. Wallis, Chessboard graphs, related designs, and domination parameters, J. Statist. Plann. Inference 76 (1999) 285-294, doi: 10.1016/S0378-3758(98)00132-3.

[12] H.-F. Law, Spanning tree congestion of the hypercube, Discrete Math. 309 (2009) 6644-6648, doi: 10.1016/j.disc.2009.07.007.

[13] J.H. Lindsey II, Assignment of numbers to vertices, Amer. Math. Monthly 71 (1964) 508-516, doi: 10.2307/2312587.

[14] J.W. Moon, On the Line-Graph of the Complete Bigraph, Ann. Math. Statist. 34 (1963) 664-667, doi: 10.1214/aoms/1177704179.

[15] M.I. Ostrovskii, Minimum congestion spanning trees in planar graphs, Discrete Math. 310 (2010) 1204-1209, doi: 10.1016/j.disc.2009.11.016.

[16] M.I. Ostrovskii, Minimal congestion trees, Discrete Math. 285 (2004) 219-226, doi: 10.1016/j.disc.2004.02.009.

[17] Y. Otachi, H.L. Bodlaender and E.J. van Leeuwen, Complexity Results for the Spanning Tree Congestion Problem, in: WG 2010, 6410 Lecture Notes in Comput. Sci. (Springer-Verlag, 2010) 3-14.

[18] S. Simonson, A variation on the min cut linear arrangement problem, Math. Syst. Theory 20 (1987) 235-252, doi: 10.1007/BF01692067.