Spanning tree congestion of rook's graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 753-761
Voir la notice de l'article provenant de la source Library of Science
Let G be a connected graph and T be a spanning tree of G. For e ∈ E(T), the congestion of e is the number of edges in G joining the two components of T - e. The congestion of T is the maximum congestion over all edges in T. The spanning tree congestion of G is the minimum congestion over all its spanning trees. In this paper, we determine the spanning tree congestion of the rook's graph Kₘ ☐ Kₙ for any m and n.
Keywords:
spanning tree congestion, Rook's graph
@article{DMGT_2011_31_4_a8,
author = {Kozawa, Kyohei and Otachi, Yota},
title = {Spanning tree congestion of rook's graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {753--761},
publisher = {mathdoc},
volume = {31},
number = {4},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a8/}
}
Kozawa, Kyohei; Otachi, Yota. Spanning tree congestion of rook's graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 753-761. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a8/