Spanning tree congestion of rook's graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 753-761

Voir la notice de l'article provenant de la source Library of Science

Let G be a connected graph and T be a spanning tree of G. For e ∈ E(T), the congestion of e is the number of edges in G joining the two components of T - e. The congestion of T is the maximum congestion over all edges in T. The spanning tree congestion of G is the minimum congestion over all its spanning trees. In this paper, we determine the spanning tree congestion of the rook's graph Kₘ ☐ Kₙ for any m and n.
Keywords: spanning tree congestion, Rook's graph
@article{DMGT_2011_31_4_a8,
     author = {Kozawa, Kyohei and Otachi, Yota},
     title = {Spanning tree congestion of rook's graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {753--761},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a8/}
}
TY  - JOUR
AU  - Kozawa, Kyohei
AU  - Otachi, Yota
TI  - Spanning tree congestion of rook's graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 753
EP  - 761
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a8/
LA  - en
ID  - DMGT_2011_31_4_a8
ER  - 
%0 Journal Article
%A Kozawa, Kyohei
%A Otachi, Yota
%T Spanning tree congestion of rook's graphs
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 753-761
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a8/
%G en
%F DMGT_2011_31_4_a8
Kozawa, Kyohei; Otachi, Yota. Spanning tree congestion of rook's graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 753-761. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a8/