Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2011_31_4_a7, author = {Pattabiraman, K. and Paulraja, P.}, title = {Wiener index of the tensor product of a path and a cycle}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {737--751}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a7/} }
TY - JOUR AU - Pattabiraman, K. AU - Paulraja, P. TI - Wiener index of the tensor product of a path and a cycle JO - Discussiones Mathematicae. Graph Theory PY - 2011 SP - 737 EP - 751 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a7/ LA - en ID - DMGT_2011_31_4_a7 ER -
Pattabiraman, K.; Paulraja, P. Wiener index of the tensor product of a path and a cycle. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 737-751. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a7/
[1] R. Balakrishnan and K. Ranganathan, A Text Book of Graph Theory (Springer-Verlag, New York, 2000).
[2] R. Balakrishanan, N. Sridharan and K. Viswanathan Iyer, Wiener index of graphs with more than one cut vertex, Appl. Math. Lett. 21 (2008) 922-927, doi: 10.1016/j.aml.2007.10.003.
[3] Z. Du and B. Zhou, Minimum Wiener indices of trees and unicyclic graphs of given matching number, MATCH Commun. Math. Comput. Chem. 63 (2010) 101-112.
[4] Z. Du and B. Zhou, A note on Wiener indices of unicyclic graphs, Ars Combin. 93 (2009) 97-103.
[5] M. Fischermann, A. Hoffmann, D. Rautenbach and L. Volkmann, Wiener index versus maximum degree in trees, Discrete Appl. Math. 122 (2002) 127-137, doi: 10.1016/S0166-218X(01)00357-2.
[6] I. Gutman, S. Klavžar, Wiener number of vertex-weighted graphs and a chemical application, Discrete Appl. Math. 80 (1997) 73-81, doi: 10.1016/S0166-218X(97)00070-X.
[7] T.C. Hu, Optimum communication spanning trees, SIAM J. Comput. 3 (1974) 188-195, doi: 10.1137/0203015.
[8] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley, New York, 2000).
[9] F. Jelen and E. Triesch, Superdominance order and distance of trees with bounded maximum degree, Discrete Appl. Math. 125 (2003) 225-233, doi: 10.1016/S0166-218X(02)00195-6.
[10] K. Pattabiraman and P. Paulraja, Wiener index of the tensor product of cycles, submitted.
[11] P. Paulraja and N. Varadarajan, Independent sets and matchings in tensor product of graphs, Ars Combin. 72 (2004) 263-276.
[12] B.E. Sagan, Y.-N. Yeh and P. Zhang, The Wiener polynomial of a graph, manuscript.