Wiener index of the tensor product of a path and a cycle
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 737-751

Voir la notice de l'article provenant de la source Library of Science

The Wiener index, denoted by W(G), of a connected graph G is the sum of all pairwise distances of vertices of the graph, that is, W(G) = ½Σ_u,v ∈ V(G) d(u,v). In this paper, we obtain the Wiener index of the tensor product of a path and a cycle.
Keywords: tensor product, Wiener index
@article{DMGT_2011_31_4_a7,
     author = {Pattabiraman, K. and Paulraja, P.},
     title = {Wiener index of the tensor product of a path and a cycle},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {737--751},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a7/}
}
TY  - JOUR
AU  - Pattabiraman, K.
AU  - Paulraja, P.
TI  - Wiener index of the tensor product of a path and a cycle
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 737
EP  - 751
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a7/
LA  - en
ID  - DMGT_2011_31_4_a7
ER  - 
%0 Journal Article
%A Pattabiraman, K.
%A Paulraja, P.
%T Wiener index of the tensor product of a path and a cycle
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 737-751
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a7/
%G en
%F DMGT_2011_31_4_a7
Pattabiraman, K.; Paulraja, P. Wiener index of the tensor product of a path and a cycle. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 737-751. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a7/