Wiener index of the tensor product of a path and a cycle
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 737-751.

Voir la notice de l'article provenant de la source Library of Science

The Wiener index, denoted by W(G), of a connected graph G is the sum of all pairwise distances of vertices of the graph, that is, W(G) = ½Σ_u,v ∈ V(G) d(u,v). In this paper, we obtain the Wiener index of the tensor product of a path and a cycle.
Keywords: tensor product, Wiener index
@article{DMGT_2011_31_4_a7,
     author = {Pattabiraman, K. and Paulraja, P.},
     title = {Wiener index of the tensor product of a path and a cycle},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {737--751},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a7/}
}
TY  - JOUR
AU  - Pattabiraman, K.
AU  - Paulraja, P.
TI  - Wiener index of the tensor product of a path and a cycle
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 737
EP  - 751
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a7/
LA  - en
ID  - DMGT_2011_31_4_a7
ER  - 
%0 Journal Article
%A Pattabiraman, K.
%A Paulraja, P.
%T Wiener index of the tensor product of a path and a cycle
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 737-751
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a7/
%G en
%F DMGT_2011_31_4_a7
Pattabiraman, K.; Paulraja, P. Wiener index of the tensor product of a path and a cycle. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 737-751. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a7/

[1] R. Balakrishnan and K. Ranganathan, A Text Book of Graph Theory (Springer-Verlag, New York, 2000).

[2] R. Balakrishanan, N. Sridharan and K. Viswanathan Iyer, Wiener index of graphs with more than one cut vertex, Appl. Math. Lett. 21 (2008) 922-927, doi: 10.1016/j.aml.2007.10.003.

[3] Z. Du and B. Zhou, Minimum Wiener indices of trees and unicyclic graphs of given matching number, MATCH Commun. Math. Comput. Chem. 63 (2010) 101-112.

[4] Z. Du and B. Zhou, A note on Wiener indices of unicyclic graphs, Ars Combin. 93 (2009) 97-103.

[5] M. Fischermann, A. Hoffmann, D. Rautenbach and L. Volkmann, Wiener index versus maximum degree in trees, Discrete Appl. Math. 122 (2002) 127-137, doi: 10.1016/S0166-218X(01)00357-2.

[6] I. Gutman, S. Klavžar, Wiener number of vertex-weighted graphs and a chemical application, Discrete Appl. Math. 80 (1997) 73-81, doi: 10.1016/S0166-218X(97)00070-X.

[7] T.C. Hu, Optimum communication spanning trees, SIAM J. Comput. 3 (1974) 188-195, doi: 10.1137/0203015.

[8] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley, New York, 2000).

[9] F. Jelen and E. Triesch, Superdominance order and distance of trees with bounded maximum degree, Discrete Appl. Math. 125 (2003) 225-233, doi: 10.1016/S0166-218X(02)00195-6.

[10] K. Pattabiraman and P. Paulraja, Wiener index of the tensor product of cycles, submitted.

[11] P. Paulraja and N. Varadarajan, Independent sets and matchings in tensor product of graphs, Ars Combin. 72 (2004) 263-276.

[12] B.E. Sagan, Y.-N. Yeh and P. Zhang, The Wiener polynomial of a graph, manuscript.