Wiener index of the tensor product of a path and a cycle
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 737-751
Voir la notice de l'article provenant de la source Library of Science
The Wiener index, denoted by W(G), of a connected graph G is the sum of all pairwise distances of vertices of the graph, that is, W(G) = ½Σ_u,v ∈ V(G) d(u,v). In this paper, we obtain the Wiener index of the tensor product of a path and a cycle.
Keywords:
tensor product, Wiener index
@article{DMGT_2011_31_4_a7,
author = {Pattabiraman, K. and Paulraja, P.},
title = {Wiener index of the tensor product of a path and a cycle},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {737--751},
publisher = {mathdoc},
volume = {31},
number = {4},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a7/}
}
TY - JOUR AU - Pattabiraman, K. AU - Paulraja, P. TI - Wiener index of the tensor product of a path and a cycle JO - Discussiones Mathematicae. Graph Theory PY - 2011 SP - 737 EP - 751 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a7/ LA - en ID - DMGT_2011_31_4_a7 ER -
Pattabiraman, K.; Paulraja, P. Wiener index of the tensor product of a path and a cycle. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 737-751. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a7/