Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2011_31_4_a5, author = {Volkmann, Lutz}, title = {Connected global offensive k-alliances in graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {699--707}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a5/} }
Volkmann, Lutz. Connected global offensive k-alliances in graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 699-707. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a5/
[1] S. Bermudo, J.A. Rodriguez-Velázquez, J.M. Sigarreta and I.G. Yero, On global offensive k-alliances in graphs, Appl. Math. Lett. 23 (2010) 1454-1458, doi: 10.1016/j.aml.2010.08.008.
[2] M. Chellali, Trees with equal global offensive k-alliance and k-domination numbers, Opuscula Math. 30 (2010) 249-254.
[3] M. Chellali, T.W. Haynes, B. Randerath and L. Volkmann, Bounds on the global offensive k-alliance number in graphs, Discuss. Math. Graph Theory 29 (2009) 597-613, doi: 10.7151/dmgt.1467.
[4] H. Fernau, J.A. Rodriguez and J.M. Sigarreta, Offensive r-alliance in graphs, Discrete Appl. Math. 157 (2009) 177-182, doi: 10.1016/j.dam.2008.06.001.
[5] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer Science (John Wiley and Sons, New York, 1985) 283-300.
[6] J.F. Fink and M.S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, in: Graph Theory with Applications to Algorithms and Computer Science (John Wiley and Sons, New York, 1985) 301-311.
[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[8] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs: Advanced Topics ( Marcel Dekker, New York, 1998).
[9] P. Kristiansen, S.M. Hedetniemi and S.T. Hedetniemi, Alliances in graphs, J. Combin. Math. Combin. Comput. 48 (2004) 157-177.
[10] O. Ore, Theory of graphs (Amer. Math. Soc. Colloq. Publ. 38 Amer. Math. Soc., Providence, R1, 1962).
[11] K.H. Shafique and R.D. Dutton, Maximum alliance-free and minimum alliance-cover sets, Congr. Numer. 162 (2003) 139-146.
[12] K.H. Shafique and R.D. Dutton, A tight bound on the cardinalities of maximum alliance-free and minimum alliance-cover sets, J. Combin. Math. Combin. Comput. 56 (2006) 139-145.