Connected global offensive k-alliances in graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 699-707

Voir la notice de l'article provenant de la source Library of Science

We consider finite graphs G with vertex set V(G). For a subset S ⊆ V(G), we define by G[S] the subgraph induced by S. By n(G) = |V(G) | and δ(G) we denote the order and the minimum degree of G, respectively. Let k be a positive integer. A subset S ⊆ V(G) is a connected global offensive k-alliance of the connected graph G, if G[S] is connected and |N(v) ∩ S | ≥ |N(v) -S | + k for every vertex v ∈ V(G) -S, where N(v) is the neighborhood of v. The connected global offensive k-alliance number γₒ^k,c(G) is the minimum cardinality of a connected global offensive k-alliance in G.
Keywords: alliances in graphs, connected global offensive k-alliance, global offensive k-alliance, domination
@article{DMGT_2011_31_4_a5,
     author = {Volkmann, Lutz},
     title = {Connected global offensive k-alliances in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {699--707},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a5/}
}
TY  - JOUR
AU  - Volkmann, Lutz
TI  - Connected global offensive k-alliances in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 699
EP  - 707
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a5/
LA  - en
ID  - DMGT_2011_31_4_a5
ER  - 
%0 Journal Article
%A Volkmann, Lutz
%T Connected global offensive k-alliances in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 699-707
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a5/
%G en
%F DMGT_2011_31_4_a5
Volkmann, Lutz. Connected global offensive k-alliances in graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 699-707. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a5/