Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2011_31_4_a3, author = {Aravind, N. and Narayanan, N. and Subramanian, C.}, title = {Oriented colouring of some graph products}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {675--686}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a3/} }
TY - JOUR AU - Aravind, N. AU - Narayanan, N. AU - Subramanian, C. TI - Oriented colouring of some graph products JO - Discussiones Mathematicae. Graph Theory PY - 2011 SP - 675 EP - 686 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a3/ LA - en ID - DMGT_2011_31_4_a3 ER -
Aravind, N.; Narayanan, N.; Subramanian, C. Oriented colouring of some graph products. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 675-686. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a3/
[1] N.R. Aravind and C.R. Subramanian, Forbidden subgraph colorings and the oriented chromatic number, in: 4th International Workshop on Combinatorial Algorithms 4393 (2009) 477-488.
[2] O.V. Borodin, A.V. Kostochka, J. Nesetril, A. Raspaud and É. Sopena, On the maximum average degree and the oriented chromatic number of a graph, Discrete Math. 206 (1999) 77-89, doi: 10.1016/S0012-365X(98)00393-8.
[3] O.V. Borodin, A.V. Kostochka, A. Raspaud and É. Sopena. Acyclic colouring of 1-planar graphs, Discrete Appl. Math. 114 (2001) 29-41, doi: 10.1016/S0166-218X(00)00359-0.
[4] B. Courcelle, The monadic second order logic of graphs. vi. on several representations of graphs by relational structures, Discrete Appl. Math. 54 (1994) 117-149, doi: 10.1016/0166-218X(94)90019-1.
[5] L. Esperet and P. Ochem, Oriented colorings of 2-outerplanar graphs, Information Processing Letters 101 (2007) 215-219, doi: 10.1016/j.ipl.2006.09.007.
[6] G. Fertin, A. Raspaud and A. Roychowdhury, On the oriented chromatic number of grids, Information Processing Letters 85 (2003) 261-266, doi: 10.1016/S0020-0190(02)00405-2.
[7] E. Fried, On homogeneous tournaments, Combinatorial Theory and its Applications 2 (1970) 467-476.
[8] P. Hell and J. Nesetril, Graphs and Homomorphisms, Oxford Lecture Series in Mathematics and its Applications (28), 2004.
[9] T. Herman, I. Pirwani and S. Pemmaraju, Oriented edge colorings and link scheduling in sensor networks, in: SENSORWARE 2006: 1st International Workshop on Software for Sensor Networks, 2006.
[10] W. Imrich and S. Klavžar, Product Graphs : Structure and Recognition (John Wiley Sons, Inc., 2000).
[11] A.V. Kostochka, É. Sopena and X. Zhu, Acyclic and oriented chromatic numbers of graphs, J. Graph Theory 24 (1997) 331-340, doi: 10.1002/(SICI)1097-0118(199704)24:4331::AID-JGT5>3.0.CO;2-P
[12] T.H. Marshall, Homomorphism bounds for oriented planar graphs, J. Graph Theory 55 (2007) 175-190, doi: 10.1002/jgt.20233.
[13] J. Nesetril, A. Raspaud and É. Sopena, Colorings and girth of oriented planar graphs, Discrete Math. 165-166 (1997) 519-530.
[14] P. Ochem, Oriented colorings of triangle-free planar graphs, Information Processing Letters 92 (2004) 71-76, doi: 10.1016/j.ipl.2004.06.012.
[15] A. Pinlou and É. Sopena, Oriented vertex and arc colorings of outerplanar graphs, Information Processing Letters 100 (2006) 97-104, doi: 10.1016/j.ipl.2006.06.012.
[16] A. Raspaud and É. Sopena, Good and semi-strong colorings of oriented planar graphs, Information Processing Letters 51 (1994) 171-174, doi: 10.1016/0020-0190(94)00088-3.
[17] É. Sopena, The chromatic number of oriented graphs, J. Graph Theory 25 (1997) 191-205, doi: 10.1002/(SICI)1097-0118(199707)25:3191::AID-JGT3>3.0.CO;2-G
[18] É. Sopena, Oriented graph coloring, Discrete Math. 229 (2001) 359-369, doi: 10.1016/S0012-365X(00)00216-8.