Complete minors, independent sets, and chordal graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 639-674
Voir la notice de l'article provenant de la source Library of Science
The Hadwiger number h(G) of a graph G is the maximum size of a complete minor of G. Hadwiger's Conjecture states that h(G) ≥ χ(G). Since χ(G) α(G) ≥ |V(G)|, Hadwiger's Conjecture implies that α(G) h(G) ≥ |V(G)|. We show that (2α(G) - ⌈log_τ(τα(G)/2)⌉) h(G) ≥ |V(G)| where τ ≍ 6.83. For graphs with α(G) ≥ 14, this improves on a recent result of Kawarabayashi and Song who showed (2α(G) - 2) h(G) ≥ |V(G) | when α(G) ≥ 3.
Keywords:
clique minor, independence number, Hadwiger conjecture, chordal graphs
@article{DMGT_2011_31_4_a2,
author = {Balogh, J\'ozsef and Lenz, John and Wu, Hehui},
title = {Complete minors, independent sets, and chordal graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {639--674},
publisher = {mathdoc},
volume = {31},
number = {4},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a2/}
}
TY - JOUR AU - Balogh, József AU - Lenz, John AU - Wu, Hehui TI - Complete minors, independent sets, and chordal graphs JO - Discussiones Mathematicae. Graph Theory PY - 2011 SP - 639 EP - 674 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a2/ LA - en ID - DMGT_2011_31_4_a2 ER -
Balogh, József; Lenz, John; Wu, Hehui. Complete minors, independent sets, and chordal graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 639-674. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a2/