Some results on semi-total signed graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 625-638.

Voir la notice de l'article provenant de la source Library of Science

A signed graph (or sigraph in short) is an ordered pair S = (S^u,σ), where S^u is a graph G = (V,E), called the underlying graph of S and σ:E → +, - is a function from the edge set E of S^u into the set +,-, called the signature of S. The ×-line sigraph of S denoted by L_×(S) is a sigraph defined on the line graph L(S^u) of the graph S^u by assigning to each edge ef of L(S^u), the product of signs of the adjacent edges e and f in S. In this paper, first we define semi-total line sigraph and semi-total point sigraph of a given sigraph and then characterize balance and consistency of semi-total line sigraph and semi-total point sigraph.
Keywords: sigraph, semi-total line sigraph, semi-total point sigraph, balanced sigraph, consistent sigraph
@article{DMGT_2011_31_4_a1,
     author = {Sinha, Deepa and Garg, Pravin},
     title = {Some results on semi-total signed graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {625--638},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a1/}
}
TY  - JOUR
AU  - Sinha, Deepa
AU  - Garg, Pravin
TI  - Some results on semi-total signed graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 625
EP  - 638
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a1/
LA  - en
ID  - DMGT_2011_31_4_a1
ER  - 
%0 Journal Article
%A Sinha, Deepa
%A Garg, Pravin
%T Some results on semi-total signed graphs
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 625-638
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a1/
%G en
%F DMGT_2011_31_4_a1
Sinha, Deepa; Garg, Pravin. Some results on semi-total signed graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 625-638. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a1/

[1] B.D. Acharya, A characterization of consistent marked graphs, National Academy, Science Letters, India 6 (1983) 431-440.

[2] B.D. Acharya, A spectral criterion for cycle balance in networks, J. Graph Theory 4 (1981) 1-11, doi: 10.1002/jgt.3190040102.

[3] B.D. Acharya, Some further properties of consistent marked graphs, Indian J. Pure Appl. Math. 15 (1984) 837-842.

[4] B.D. Acharya and M. Acharya, New algebraic models of a social system, Indian J. Pure Appl. Math. 17 (1986) 150-168.

[5] B.D. Acharya, M. Acharya and D. Sinha, Characterization of a signed graph whose signed line graph is s-consistent, Bull. Malays. Math. Sci. Soc. 32 (2009) 335-341.

[6] M. Acharya, ×-line sigraph of a sigraph, J. Combin. Math. Combin. Comp. 69 (2009) 103-111.

[7] M. Behzad and G.T. Chartrand, Line coloring of signed graphs, Element der Mathematik, 24 (1969) 49-52.

[8] L.W. Beineke and F. Harary, Consistency in marked graphs, J. Math. Psychol. 18 (1978) 260-269, doi: 10.1016/0022-2496(78)90054-8.

[9] L.W. Beineke and F. Harary, Consistent graphs with signed points, Riv. Math. per. Sci. Econom. Sociol. 1 (1978) 81-88.

[10] D. Cartwright and F. Harary, Structural Balance: A generalization of Heider's Theory, Psych. Rev. 63 (1956) 277-293, doi: 10.1037/h0046049.

[11] G.T. Chartrand, Graphs as Mathematical Models (Prindle, Weber and Schmid, Inc., Boston, Massachusetts, 1977).

[12] M.K. Gill, Contribution to some topics in graph theory and its applications, Ph.D. Thesis, (Indian Institute of Technology, Bombay, 1983).

[13] F. Harary, On the notion of balanc signed graphs, Mich. Math. J. 2 (1953) 143-146, doi: 10.1307/mmj/1028989917.

[14] F. Harary, Graph Theory (Addison-Wesley Publ. Comp., Reading, Massachusetts, 1969).

[15] F. Harary and J.A. Kabell, A simple algorithm to detect balance in signed graphs, Math. Soc. Sci. 1 (1980/81) 131-136, doi: 10.1016/0165-4896(80)90010-4.

[16] F. Harary and J.A. Kabell, Counting balanced signed graphs using marked graphs, Proc. Edinburgh Math. Soc. 24 (1981) 99-104, doi: 10.1017/S0013091500006398.

[17] C. Hoede, A characterization of consistent marked graphs, J. Graph Theory 16 (1992) 17-23, doi: 10.1002/jgt.3190160104.

[18] E. Sampathkumar, Point-signed and line-signed graphs, Karnatak Univ. Graph Theory Res. Rep. 1 (1973), also see Abstract No. 1 in Graph Theory Newsletter 2 (1972), Nat. Acad. Sci.-Letters 7 (1984) 91-93.

[19] E. Sampathkumar and S.B. Chikkodimath, Semitotal graphs of a graph-I, J. Karnatak Univ. Sci. XVIII (1973) 274-280.

[20] D. Sinha, New frontiers in the theory of signed graph, Ph.D. Thesis (University of Delhi, Faculty of Technology, 2005).

[21] D.B. West, Introduction to Graph Theory (Prentice-Hall, India Pvt. Ltd., 1996).

[22] T. Zaslavsky, A mathematical bibliography of signed and gain graphs and allied areas, Electronic J. Combinatorics #DS8 (vi+151pp)(1999)

[23] T. Zaslavsky, Glossary of signed and gain graphs and allied areas, II Edition, Electronic J. Combinatorics, #DS9(1998).

[24] T. Zaslavsky, Signed analogs of bipartite graphs, Discrete Math. 179 (1998) 205-216, doi: 10.1016/S0012-365X(96)00386-X.