Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2011_31_4_a1, author = {Sinha, Deepa and Garg, Pravin}, title = {Some results on semi-total signed graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {625--638}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a1/} }
Sinha, Deepa; Garg, Pravin. Some results on semi-total signed graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 625-638. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a1/
[1] B.D. Acharya, A characterization of consistent marked graphs, National Academy, Science Letters, India 6 (1983) 431-440.
[2] B.D. Acharya, A spectral criterion for cycle balance in networks, J. Graph Theory 4 (1981) 1-11, doi: 10.1002/jgt.3190040102.
[3] B.D. Acharya, Some further properties of consistent marked graphs, Indian J. Pure Appl. Math. 15 (1984) 837-842.
[4] B.D. Acharya and M. Acharya, New algebraic models of a social system, Indian J. Pure Appl. Math. 17 (1986) 150-168.
[5] B.D. Acharya, M. Acharya and D. Sinha, Characterization of a signed graph whose signed line graph is s-consistent, Bull. Malays. Math. Sci. Soc. 32 (2009) 335-341.
[6] M. Acharya, ×-line sigraph of a sigraph, J. Combin. Math. Combin. Comp. 69 (2009) 103-111.
[7] M. Behzad and G.T. Chartrand, Line coloring of signed graphs, Element der Mathematik, 24 (1969) 49-52.
[8] L.W. Beineke and F. Harary, Consistency in marked graphs, J. Math. Psychol. 18 (1978) 260-269, doi: 10.1016/0022-2496(78)90054-8.
[9] L.W. Beineke and F. Harary, Consistent graphs with signed points, Riv. Math. per. Sci. Econom. Sociol. 1 (1978) 81-88.
[10] D. Cartwright and F. Harary, Structural Balance: A generalization of Heider's Theory, Psych. Rev. 63 (1956) 277-293, doi: 10.1037/h0046049.
[11] G.T. Chartrand, Graphs as Mathematical Models (Prindle, Weber and Schmid, Inc., Boston, Massachusetts, 1977).
[12] M.K. Gill, Contribution to some topics in graph theory and its applications, Ph.D. Thesis, (Indian Institute of Technology, Bombay, 1983).
[13] F. Harary, On the notion of balanc signed graphs, Mich. Math. J. 2 (1953) 143-146, doi: 10.1307/mmj/1028989917.
[14] F. Harary, Graph Theory (Addison-Wesley Publ. Comp., Reading, Massachusetts, 1969).
[15] F. Harary and J.A. Kabell, A simple algorithm to detect balance in signed graphs, Math. Soc. Sci. 1 (1980/81) 131-136, doi: 10.1016/0165-4896(80)90010-4.
[16] F. Harary and J.A. Kabell, Counting balanced signed graphs using marked graphs, Proc. Edinburgh Math. Soc. 24 (1981) 99-104, doi: 10.1017/S0013091500006398.
[17] C. Hoede, A characterization of consistent marked graphs, J. Graph Theory 16 (1992) 17-23, doi: 10.1002/jgt.3190160104.
[18] E. Sampathkumar, Point-signed and line-signed graphs, Karnatak Univ. Graph Theory Res. Rep. 1 (1973), also see Abstract No. 1 in Graph Theory Newsletter 2 (1972), Nat. Acad. Sci.-Letters 7 (1984) 91-93.
[19] E. Sampathkumar and S.B. Chikkodimath, Semitotal graphs of a graph-I, J. Karnatak Univ. Sci. XVIII (1973) 274-280.
[20] D. Sinha, New frontiers in the theory of signed graph, Ph.D. Thesis (University of Delhi, Faculty of Technology, 2005).
[21] D.B. West, Introduction to Graph Theory (Prentice-Hall, India Pvt. Ltd., 1996).
[22] T. Zaslavsky, A mathematical bibliography of signed and gain graphs and allied areas, Electronic J. Combinatorics #DS8 (vi+151pp)(1999)
[23] T. Zaslavsky, Glossary of signed and gain graphs and allied areas, II Edition, Electronic J. Combinatorics, #DS9(1998).
[24] T. Zaslavsky, Signed analogs of bipartite graphs, Discrete Math. 179 (1998) 205-216, doi: 10.1016/S0012-365X(96)00386-X.