Some results on semi-total signed graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 625-638

Voir la notice de l'article provenant de la source Library of Science

A signed graph (or sigraph in short) is an ordered pair S = (S^u,σ), where S^u is a graph G = (V,E), called the underlying graph of S and σ:E → +, - is a function from the edge set E of S^u into the set +,-, called the signature of S. The ×-line sigraph of S denoted by L_×(S) is a sigraph defined on the line graph L(S^u) of the graph S^u by assigning to each edge ef of L(S^u), the product of signs of the adjacent edges e and f in S. In this paper, first we define semi-total line sigraph and semi-total point sigraph of a given sigraph and then characterize balance and consistency of semi-total line sigraph and semi-total point sigraph.
Keywords: sigraph, semi-total line sigraph, semi-total point sigraph, balanced sigraph, consistent sigraph
@article{DMGT_2011_31_4_a1,
     author = {Sinha, Deepa and Garg, Pravin},
     title = {Some results on semi-total signed graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {625--638},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a1/}
}
TY  - JOUR
AU  - Sinha, Deepa
AU  - Garg, Pravin
TI  - Some results on semi-total signed graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 625
EP  - 638
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a1/
LA  - en
ID  - DMGT_2011_31_4_a1
ER  - 
%0 Journal Article
%A Sinha, Deepa
%A Garg, Pravin
%T Some results on semi-total signed graphs
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 625-638
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a1/
%G en
%F DMGT_2011_31_4_a1
Sinha, Deepa; Garg, Pravin. Some results on semi-total signed graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 625-638. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a1/