On the forcing geodetic and forcing steiner numbers of a graph
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 611-624.

Voir la notice de l'article provenant de la source Library of Science

For a connected graph G = (V,E), a set W ⊆ V is called a Steiner set of G if every vertex of G is contained in a Steiner W-tree of G. The Steiner number s(G) of G is the minimum cardinality of its Steiner sets and any Steiner set of cardinality s(G) is a minimum Steiner set of G. For a minimum Steiner set W of G, a subset T ⊆ W is called a forcing subset for W if W is the unique minimum Steiner set containing T. A forcing subset for W of minimum cardinality is a minimum forcing subset of W. The forcing Steiner number of W, denoted by fₛ(W), is the cardinality of a minimum forcing subset of W. The forcing Steiner number of G, denoted by fₛ(G), is fₛ(G) = minfₛ(W), where the minimum is taken over all minimum Steiner sets W in G. The geodetic number g(G) and the forcing geodetic number f(G) of a graph G are defined in [2]. It is proved in [6] that there is no relationship between the geodetic number and the Steiner number of a graph so that there is no relationship between the forcing geodetic number and the forcing Steiner number of a graph. We give realization results for various possibilities of these four parameters.
Keywords: geodetic number, Steiner number, forcing geodetic number, forcing Steiner number
@article{DMGT_2011_31_4_a0,
     author = {Santhakumaran, A. and John, J.},
     title = {On the forcing geodetic and forcing steiner numbers of a graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {611--624},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a0/}
}
TY  - JOUR
AU  - Santhakumaran, A.
AU  - John, J.
TI  - On the forcing geodetic and forcing steiner numbers of a graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2011
SP  - 611
EP  - 624
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a0/
LA  - en
ID  - DMGT_2011_31_4_a0
ER  - 
%0 Journal Article
%A Santhakumaran, A.
%A John, J.
%T On the forcing geodetic and forcing steiner numbers of a graph
%J Discussiones Mathematicae. Graph Theory
%D 2011
%P 611-624
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a0/
%G en
%F DMGT_2011_31_4_a0
Santhakumaran, A.; John, J. On the forcing geodetic and forcing steiner numbers of a graph. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 611-624. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a0/

[1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990).

[2] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory 19 (1999) 45-58, doi: 10.7151/dmgt.1084.

[3] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002) 1-6, doi: 10.1002/net.10007.

[4] G. Chartrand and P. Zhang, The Steiner number of a graph, Discrete Math. 242 (2002) 41-54, doi: 10.1016/S0012-365X(00)00456-8.

[5] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modeling 17 (1993) 89-95, doi: 10.1016/0895-7177(93)90259-2.

[6] I.M. Pelayo, Comment on 'The Steiner number of a graph' by G. Chartrand and P. Zhang, Discrete Math. 242 (2002) 41-54.

[7] A.P. Santhakumaran, P. Titus and J. John, On the connected geodetic number of a graph, J. Combin. Math. Combin. Comput. 69 (2009) 219-229.

[8] A.P. Santhakumaran, P. Titus and J. John, The upper connected geodetic number and forcing connected geodetic number of a graph, Discrete Appl. Math. 159 (2009) 1571-1580, doi: 10.1016/j.dam.2008.06.005.