@article{DMGT_2011_31_4_a0,
author = {Santhakumaran, A. and John, J.},
title = {On the forcing geodetic and forcing steiner numbers of a graph},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {611--624},
year = {2011},
volume = {31},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a0/}
}
Santhakumaran, A.; John, J. On the forcing geodetic and forcing steiner numbers of a graph. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 4, pp. 611-624. http://geodesic.mathdoc.fr/item/DMGT_2011_31_4_a0/
[1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990).
[2] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory 19 (1999) 45-58, doi: 10.7151/dmgt.1084.
[3] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002) 1-6, doi: 10.1002/net.10007.
[4] G. Chartrand and P. Zhang, The Steiner number of a graph, Discrete Math. 242 (2002) 41-54, doi: 10.1016/S0012-365X(00)00456-8.
[5] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modeling 17 (1993) 89-95, doi: 10.1016/0895-7177(93)90259-2.
[6] I.M. Pelayo, Comment on 'The Steiner number of a graph' by G. Chartrand and P. Zhang, Discrete Math. 242 (2002) 41-54.
[7] A.P. Santhakumaran, P. Titus and J. John, On the connected geodetic number of a graph, J. Combin. Math. Combin. Comput. 69 (2009) 219-229.
[8] A.P. Santhakumaran, P. Titus and J. John, The upper connected geodetic number and forcing connected geodetic number of a graph, Discrete Appl. Math. 159 (2009) 1571-1580, doi: 10.1016/j.dam.2008.06.005.