γ-graphs of graphs
Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 517-531
Voir la notice de l'article provenant de la source Library of Science
A set S ⊆ V is a dominating set of a graph G = (V,E) if every vertex in V -S is adjacent to at least one vertex in S. The domination number γ(G) of G equals the minimum cardinality of a dominating set S in G; we say that such a set S is a γ-set. In this paper we consider the family of all γ-sets in a graph G and we define the γ-graph G(γ) = (V(γ), E(γ)) of G to be the graph whose vertices V(γ) correspond 1-to-1 with the γ-sets of G, and two γ-sets, say D₁ and D₂, are adjacent in E(γ) if there exists a vertex v ∈ D₁ and a vertex w ∈ D₂ such that v is adjacent to w and D₁ = D₂ - w ∪ v, or equivalently, D₂ = D₁ - v ∪ w. In this paper we initiate the study of γ-graphs of graphs.
Keywords:
dominating sets, gamma graphs
@article{DMGT_2011_31_3_a7,
author = {Fricke, Gerd and Hedetniemi, Sandra and Hedetniemi, Stephen and Hutson, Kevin},
title = {\ensuremath{\gamma}-graphs of graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {517--531},
publisher = {mathdoc},
volume = {31},
number = {3},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a7/}
}
TY - JOUR AU - Fricke, Gerd AU - Hedetniemi, Sandra AU - Hedetniemi, Stephen AU - Hutson, Kevin TI - γ-graphs of graphs JO - Discussiones Mathematicae. Graph Theory PY - 2011 SP - 517 EP - 531 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a7/ LA - en ID - DMGT_2011_31_3_a7 ER -
Fricke, Gerd; Hedetniemi, Sandra; Hedetniemi, Stephen; Hutson, Kevin. γ-graphs of graphs. Discussiones Mathematicae. Graph Theory, Tome 31 (2011) no. 3, pp. 517-531. http://geodesic.mathdoc.fr/item/DMGT_2011_31_3_a7/